- •Глава 1. Материаловедение. Структура материалов. 12
- •Глава 2. Стали. 54
- •Глава 3. Чугуны. 110
- •Глава 4. Цветные и редкие металлы и сплавы. 136
- •Глава 5. Сплавы с особыми физическими свойствами. 181
- •Глава 6. Полимеры. 201
- •Глава 7. Керамика. 243
- •Глава 8. Стекло. 265
- •Глава 9. Композиционные материалы. 296
- •Глава 10. Древесные материалы. 316
- •Глава 11. Строительные материалы. 355
- •Глава 12. Наноматериалы. 379
- •Предисловие.
- •Теоретические материалы. Глава 1. Материаловедение. Структура материалов.
- •1.1. Материаловедение, основные понятия.
- •1.2. Количество материалов.
- •1.3. Классификация материалов по назначению.
- •1.4. Агрегатные состояния вещества.
- •1.5. Кристаллическая структура веществ.
- •1.6. Дефекты в кристаллической структуре веществ.
- •1.7. Уровни структуры материалов.
- •1.8. Физико-химический анализ. Диаграммы состояния.
- •1.9. Сплавы, твёрдые растворы.
- •1.10. Химические соединения.
- •1.11. Зернистая структура поликристаллических материалов.
- •1.12. Основные механические свойства материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 2. Стали.
- •2.1. Полиморфизм и свойства железа.
- •2.2. Диаграмма состояния системы Fe – Fe3c.
- •2.3. Сравнение основных свойств сталей и чугунов.
- •2.4. Превращения сталей в твёрдом состоянии.
- •2.5. Стали. Классификация сталей.
- •2.6. Термическая обработка и фазовые превращения в сталях.
- •2.7. Превращения в стали при равновесном нагреве и охлаждении.
- •2.8. Диаграмма изотермических превращений аустенита. Мартенситное превращение.
- •2.9. Основные виды термической обработки стали.
- •2.9.1. Отжиг.
- •2.9.2. Нормализация.
- •2.9.3. Закалка.
- •2.9.4. Отпуск стали.
- •2.10. Углеродистые стали.
- •2.11. Влияние постоянных примесей на углеродистые стали.
- •2.12. Легирующие элементы. Легированные стали, их маркировка.
- •2.13. Жаропрочные и жаростойкие стали.
- •2.14. Коррозионно-стойкие стали.
- •Вопросы для самопроверки.
- •Глава 3. Чугуны.
- •3.1. Чугуны, химические и фазовые составы.
- •3.2. Преимущества чугунов.
- •3.3. Виды чугунов доменного производства.
- •3.4. Классификация и маркировка чугунов.
- •3.5. Модифицирование чугунов.
- •3.6. Белый чугун.
- •3.7. Серый чугун.
- •3.8. Высокопрочный чугун.
- •3.9. Ковкий чугун.
- •3.10. Легированные чугуны.
- •3.11. Другие виды чугунов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •4.1. Классификация цветных и редких металлов.
- •4.2. Лёгкие металлы.
- •4.3. Магний и его сплавы.
- •4.4. Применение магния и магниевых сплавов.
- •4.5. Алюминий и его сплавы.
- •4.6. Маркировка алюминиевых сплавов.
- •4.7. Классификация алюминиевых сплавов.
- •4.8. Области применения алюминиевых сплавов.
- •4.9. Титан.
- •4.10. Области применения титана.
- •4.11. Медь и медные сплавы.
- •4.12. Латуни.
- •4.13. Бронзы.
- •4.14. Марки и области применения бронз.
- •4.15. Сплавы меди мельхиор, нейзильбер, куниаль.
- •4.16. Свинец и цинк.
- •4.17. Никель и кобальт.
- •4.18. Олово.
- •4.19. Ртуть.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •5.1. Металлические проводниковые материалы.
- •5.2. Электромеханические свойства меди и алюминия.
- •5.3. Перспективы развития проводниковых материалов.
- •5.4. Полупроводниковые материалы.
- •5.5. Магнитные материалы.
- •5.6. Тугоплавкие металлы и сплавы.
- •5.7. Сверхпроводящие материалы.
- •5.8. Сплавы с эффектом памяти формы.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 6. Полимеры.
- •6.1. Общие сведения.
- •6.2. Классификация полимеров.
- •6.2.1. Классификация по происхождению.
- •6.2.2. Классификация по структурным признакам.
- •6.3. Общие свойства полимеров.
- •6.3.1. Физические свойства.
- •6.3.2. Механические свойства.
- •6.3.3. Теплофизические свойства.
- •6.3.4. Химические свойства.
- •6.3.5. Электрические свойства.
- •6.3.6. Технологические свойства.
- •6.3.7. Старение полимеров.
- •6.3.8. Радиационная стойкость полимеров. Абляция.
- •6.4. Пластические массы.
- •6.5. Виды пластических масс.
- •6.5.1. Полиэтилен.
- •6.5.2. Полипропилен.
- •6.5.3. Поливинилхлорид.
- •6.5.4. Полистирол.
- •6.5.5. Фторопласты.
- •6.5.6. Полиимид.
- •6.5.7. Полиакрилаты.
- •6.5.8. Фенолформальдегидные смолы (ффс).
- •6.5.9. Эпоксидные смолы.
- •6.5.10. Поликарбонатые полимеры.
- •6.6. Каучук, природный каучук.
- •6.7. Синтетические каучуки.
- •6.8. Резины.
- •6.9. Синтетические эмали, лаки, компаунды.
- •6.10. Полимерные клеи.
- •6.11. Полимеры в медицине.
- •6.12. Биологически разлагаемые пластики на основе природных полимеров.
- •6.13. Неорганический полимер - асбест.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 7. Керамика.
- •7.1. Понятие керамики.
- •7.2. Керамика как альтернативный материал.
- •7.3. Состав керамики.
- •7.3.1. Глинистые породы.
- •7.3.2. Свойства глин.
- •7.3.3. Керамика на основе технических оксидов.
- •7.3.4. Керамика на основе бескислородного технического сырья.
- •7.4. Структура керамики.
- •7.5. Свойства керамики.
- •7.6. Керамика на основе глинистого сырья.
- •7.6.1. Фарфор.
- •7.6.2. Фаянс.
- •7.6.3. Гжель.
- •7.6.4.Огнеупорная керамика на основе глин.
- •7.7. Виды технической керамики.
- •7.7.1. Масштабы производства высокотехнологичной керамики.
- •7.7.2. Керамические, пьезокерамические материалы.
- •7.7.3. Керамические материалы с химическими функциями.
- •7.7.4. Керамические материалы для ядерной энергетики.
- •7.7.5. Конструкционная керамика.
- •7.8. Характеристики некоторых керамик.
- •7.8.1. Высокоглиноземистая керамика.
- •7.8.2. Керамика из нитрида и карбида кремния.
- •7.8.3. Другие виды технической керамики.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 8. Стекло.
- •8.1. История стекла.
- •8.2. Отличительные особенности стекла как материала.
- •8.3. Структура веществ в стеклообразном состоянии.
- •8.3.1. Кристаллическое и стеклообразное состояния.
- •8.3.2. Кристаллохимическое описание строения стекол.
- •8.3.3. Кварцевое стекло.
- •8.3.4. Бинарные щелочно-силикатные стекла.
- •8.3.5. Фосфатные стекла.
- •8.3.6. Микронеоднородное строение стекол.
- •8.4. Классификация стекол по составу.
- •8.5. Свойства стекол.
- •8.6. Виды стёкол.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 9. Композиционные материалы.
- •9.1. Строение и признаки композиционных материалов.
- •9.2. Классификация.
- •9.3. Физико-химические основы создания композиционных материалов.
- •9.4. Области применения композиционных материалов.
- •9.5. Виды композиционных материалов.
- •9.5.1. Композиционные материалы с металлической матрицей.
- •9.5.2. Волокнистые композиционные материалы.
- •9.5.3. Дисперсионно-упрочненные композиционные материалы.
- •9.5.4. Композиционные материалы с неметаллической матрицей.
- •9.5.5. Углепласты.
- •9.5.6. Бороволокниты.
- •9.5.7. Органоволокниты.
- •9.6. Получение композиционных материалов на металлической основе, армированных волокнами
- •9.7. Основные методы получения композиционных материалов.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 10. Древесные материалы.
- •10.1. Древесина как материал.
- •10.2. Лиственные и хвойные породы.
- •10.3. Части дерева.
- •10.4. Макроскопическое строение дерева.
- •10.5. Химический состав древесины и её микроскопическое строение.
- •10.6. Физические свойства.
- •10.7. Механические свойства.
- •10.8. Пороки древесины.
- •10.9. Виды хвойных пород.
- •10.10. Виды лиственных пород.
- •10.11. Пиломатериалы и продукты переработки древесины.
- •10.12. Виды изделий из дерева.
- •10.13. Модифицированная древесина.
- •10.14. Термически обработанная древесина (термодревесина).
- •10.15. Области применения древесины.
- •10.16. Скрипка.
- •Резюме.
- •Вопросы для самоконтроля.
- •Глава 11. Строительные материалы.
- •11.1. Виды строительных материалов.
- •11.2. Цемент, портландцемент.
- •11.3. Цементные растворы.
- •11.4. Бетон. Классификация бетонов.
- •11.5. Компоненты бетона.
- •11.6. Марка, класс и прочность бетона.
- •11.7. Лёгкие бетоны.
- •11.8. Тяжелые бетоны.
- •11.9. Кирпич строительный.
- •11.9.1. Размеры кирпича.
- •11.9.2. Пустотность кирпича.
- •11.9.3. Марка кирпича.
- •11.9.4. Морозостойкость кирпича.
- •11.9.5. Строительные кирпичи.
- •11.10. Добавки наноразмерных частиц в бетоны.
- •Резюме.
- •Вопросы для самопроверки.
- •Глава 12. Наноматериалы.
- •12.1. Терминология наноразмерных объектов.
- •12.2. Физические причины специфики наноматериалов
- •12.3. Классификация наноматериалов.
- •12.4. Фуллерены, фуллериты.
- •12.5. Углеродные нанотрубки.
- •12.6. Графен.
- •12.7. Размерность процессоров.
- •12.8. Фториды редкоземельных элементов.
- •Резюме.
- •Вопросы для самопроверки.
- •Заключение.
- •Тесты для самоконтроля. Глава 1. Материаловедение. Структура материалов.
- •Глава 2. Стали.
- •Глава 3. Чугуны.
- •Глава 4. Цветные и редкие металлы и сплавы.
- •Глава 5. Сплавы с особыми физическими свойствами.
- •Глава 6. Полимерные материалы.
- •Глава 7. Керамика.
- •Глава 8. Стекло.
- •Глава 9. Композиционные материалы.
- •Глава 10. Древесные материалы.
- •Глава 11. Строительные материалы.
- •Глава 12. Наноструктурированные материалы.
- •Ключи к тестам для самоконтроля.
- •Задания для курсовой работы.
- •Вопросы для подготовки к экзамену.
- •Глоссарий.
- •Список источников информации. Основная литература
Глава 12. Наноматериалы.
В ближайшие годы доля товаров с наноматериалами достигнет 17 % мирового рынка.
Цели и задачи.
Цель изучения темы наноматериалы состоит в получении знаний по новым видам материалов, которые отличаются от обычных материалов тем, что их свойства определяются структурой объектов с хотя бы одним линейным размером порядка 100 нм.
Задачи:
- понять логику формирования определений наноматериалов;
- уяснить физико-химические причины особенности наноматериалов;
- разобраться с классификацией наноматериалов;
- создать систему знаний по видам наноматериалов и областям их применения.
В 1959 году знаменитый американский физик, лауреат Нобелевской премии Ричард Ф. Фейнман прочитал лекцию под названием «Внизу полным-полно места», в которой впервые была рассмотрена возможность создания веществ совершенно новым способом, а именно, «атомной укладкой», при которой человек манипулирует нужными атомами поштучно, располагая их в требуемом ему порядке.
Впервые термин «нанотехнология» употребил Норио Танигути в 1974 г. Он назвал этим термином производство изделий размеров порядка нанометров. Первая часть термина «нанотехнология» происходит от греческого слова nannos — карликовый (отсюда название единицы измерения длины — «нанометр» — одна миллиардная доля метра).
В 1986 году Эрик К. Дрекслер в своей известной книге «Машины творения» (предложил создавать устройства, названные им «молекулярными машинами», и раскрыл удивительные возможности, связанные с развитием нанотехнологии).
С другой стороны, начиная с 1980 года, в технологии производства транзисторов и лазеров все чаще стали использоваться искусственно создаваемые пленки толщиной около 10 нм, что позволяло изготовлять устройства с новыми, повышенными техническими характеристиками. В 1980 году в Японии был изготовлен первый полевой транзистор с высокой подвижностью носителей (High Electron Mobility Transistor, HEMT). В 1981 году сотрудники фирмы IBM создали сканирующий туннельный микроскоп (СТМ), позволяющий получать изображение с разрешением на уровне размеров отдельных атомов, что явилось исключительно важным научным достижением, поскольку исследователи впервые получили возможность непосредственно наблюдать и изучать мир в нанометровом, атомарном масштабе.
12.1. Терминология наноразмерных объектов.
Терминология по наноматериалам и нанотехнологиям в настоящее время только устанавливается. Существует несколько подходов к тому, как определять понятие наноматериалы (рис. 12.1).
Самый простой подход связан с геометрическими размерами структуры таких материалов. Согласно такому подходу материалы с характерным размером микроструктуры от 1 до 100 нм называют наноструктурными.
Выбор такого диапазона размеров не случаен, а определяется существованием ряда размерных эффектов и совпадением размеров кристаллитов с характерными размерами для различных физических явлений. Нижний предел считается связанным с нижним пределом симметрии нанокристаллического материала. Дело в том, что по мере снижения размера кристалла, характеризующегося строгим набором элементов симметрии, наступает такой момент, когда будет наступать потеря некоторых элементов симметрии. По данным для наиболее широко распространенных кристаллов с ОЦК и ГЦК структурами такой
Рис.12.1. Терминологические подходы к понятию наноматериалов.
критический размер равен трем координационным сферам, что для случая железа составляет около 0,5 нм, а для никеля - около 0,6 нм. Величина верхнего предела обусловлена тем, что заметные и интересные с технической точки зрения изменения физико-механических свойств материалов (прочности, твердости, коэрцитивной силы и др.) начинаются при снижении размеров зерен именно ниже 100 нм.
Второй подход связан с огромной ролью многочисленных поверхностей раздела в наноматериалах в формирование их свойств В соответствии с ним размер зерен (D) в наноматериалах определялся в интервале нескольких нанометров, т.е. в интервале, когда объемная доля поверхностей раздела в общем объеме материала составляет примерно V50% и более. Эта доля приблизительно оценивается из соотношения V 3s/D, где s — ширина приграничной области. При разумном значении s около 1 нм 50%-я доля поверхностей раздела достигается при D = 6 нм.
Существует так же подход, в соответствии с которым для наноматериалов наибольший размер одного из структурных элементов должен быть равен или быть меньше, размера, характерного для определенного физического явления. Так для прочностных свойств это будет размер бездефектного кристалла, для магнитных свойств – размер однодоменного кристалла, для электропроводности – длина свободного пробега электронов. Существенными недостатками такого подхода являются, во-первых, несоответствие размеров структурных элементов для разных свойств и материалов и, во-вторых, различность характерных размеров для разных состояний одного и того же материала.
Некоторые ученые считают, что если при уменьшении объема какого-либо вещества по одной, двум или трем координатам до размеров нанометрового масштаба возникает новое качество, или это качество возникает в композиции из таких объектов, то эти образования следует отнести к наноматериалам, а технологии их получения и дальнейшую работу с ними; к нанотехнологиям.
Наноматериалы ‑ материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками.\
Наноматериалы являются продуктами нанотехнологий, важнейшие функциональные свойства наноматериалов определяются наноуровнем их структуры.
Нанотехнология ‑ совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба.
