- •Глава 16. Микробиология кисломолочных продуктов.
- •Глава 17. Микробиология масла.
- •Глава 18. Микробиология сыра.
- •Введение
- •Раздел I общая микробиология
- •Глава 1 систематика микроорганизмов
- •1.1. Место бактерий в живой природе
- •1.2. Понятие о систематике микроорганизмов
- •1.3. Классификация бактерий
- •1.4. Классификация грибов
- •1.5. Классификация вирусов
- •Гл ава2 морфология микроорганизмов
- •2.1. Основные формы бактерий
- •2.2. Размеры микроорганизмов
- •2.3. Строение бактериальной клетки
- •2.4. Особенности морфологии грибов
- •2.5. Актиномицеты
- •2.6. Морфология вирусов
- •Глава 3 физиология микроорганизмов
- •3.1. Особенности метаболизма у микроорганизмов
- •3.2. Химический состав микроорганизмов
- •3.3. Ферменты микроорганизмов и их роль в обмене веществ
- •3.4. Анаболизм (питание) микроорганизмов
- •3.5. Катаболизм (дыхание) микроорганизмов
- •3.6. Рост и размножение микроорганизмов
- •3.7. Основные принципы культивирования микроорганизмов
- •3.8. Образование микроорганизмами пигментов и ароматических веществ. Свечение микробов
- •3.9. Особенности физиологии вирусов
- •Глава 4 влияние экологических факторов на микроорганизмы
- •4.1. Физические факторы
- •4.2. Химические факторы
- •4.3. Биологические факторы
- •Глава 5 мир микроорганизмов в природе
- •5.1. Микрофлора почвы
- •5.2. Микрофлора воды
- •5.3. Микрофлора воздуха
- •5.4. Микрофлора растений и кормов
- •5.5. Микрофлора тела животных и человека
- •Глава 6 роль микроорганизмов в превращении веществ
- •6.1. Круговорот азота
- •6.2. Круговорот углерода
- •Глава 7 основы генетики микроорганизмов
- •7.1. Понятие о наследственности и изменчивости
- •7.2. Материальная основа наследственности. Генотип и фенотип
- •7.3. Формы изменчивости
- •7.3.1. Генетические рекомбинации
- •7.3.2. Мутации
- •7.3.3. Модификация
- •7.4. Основные типы изменчивости микроорганизмов
- •7.5. Селекция микроорганизмов. Сущность генной инженерии
- •Глава 8 инфекция и иммунитет
- •8.1. Понятие об инфекции и инфекционной болезни
- •8.2. Роль микро- и макроорганизмов в инфекционном процессе
- •8.3. Способы передачи возбудителей, течение и распространение инфекционных болезней
- •8.4. Понятие об иммунитете
- •8.5. Строение системы иммунитета
- •8.6. Взаимодействие клеток в иммунном ответе
- •8.7. Специфические факторы иммунитета (антитела)
- •8.8. Антигены
- •8.9. Барьерные функции тканей и факторы естественной защиты организма
- •8.10. Виды (формы) иммунитета
- •8.11. Практическое использование учения об иммунитете
- •Раздел іі специальная микробиология
- •Глава 9. Микроорганизмы, используемые при производстве молочных продуктов
- •9.1. Молочнокислые бактерии
- •9.1.1. Лактококки
- •9.1.2. Лейконостоки
- •9.1.3. Термофильный стрептококк
- •9.1.4. Лактобактерии
- •9.2 Пропионовокислые бактерии
- •9.3. Бифидобактерий
- •9.4. Уксуснокислые бактерии
- •9.5. Дрожжи
- •9.6 Слизеобразующая палочка - brevibacterium linens
- •Глава 10
- •10.1. Гнилостные (протеолитические) бактерии
- •10.2. Маслянокислые бактерии
- •10.3. Энтерококки
- •10.4. Термоустойчивые молочнокислые палочки
- •10.5. Бактериофаги
- •Глава 11 патогенные микроорганизмы, встречающиеся в молоке и молочных продуктах
- •11.1. Возбудители пищевых отравлений
- •11.1.1 Понятие о пищевых токсикозах и токсикоинфекциях
- •11.1.2. Возбудители пищевых токсикозов
- •11.1.3. Возбудители пищевых токсикоинфекций
- •11.2 Возбудители кишечных инфекционных болезней
- •11.3. Возбудители зооантропонозов
- •11.4. Возбудители мастита
- •Глава 12 санитарно-показательные микроорганизмы
- •12.1. Понятие о санитарно-показательных микроорганизмах
- •12.2. Бактерии группы кишечных палочек
- •12.3. Энтерококки
- •12.4. Сульфитредуцирующие клостридии
- •12.5. Бактерии рода proteus
- •12.6. Стафилококки
- •12.7. Дрожжи и плесени
- •12.8. Кишечные бактериофаги
- •12.9 Общая бактериальная обсемененность (аэробные и факультативно-анаэробные мезофильные микроорганизмы)
- •Глава 13 микробиология сырого молока
- •13.1. Источники обсеменения молока микроорганизмами
- •13.2. Изменение микрофлоры молока при хранении
- •13.3. Пороки сырого молока
- •13.4. Микробиологический контроль молока и сливок, поступающих на завод
- •13.5. Требования, предъявляемые к молоку при приемке
- •Глава 14 микробиология питьевого молока и сливок
- •14.1. Методы снижения бактериальной обсемененности молока
- •14.2. Пороки питьевого молока
- •14.3. Контроль производства пастеризованных молока и сливок
- •14.4. Контроль производства стерилизованных молока и сливок
- •Глава 15 закваски
- •15.1. Исторические сведения об использовании заквасок в молочной промышленности
- •15.2. Классификация заквасок
- •15.3. Выделение чистых культур молочнокислых бактерий и определение их производственной ценности
- •15.4. Принципы подбора культур в состав заквасок
- •15.5. Приготовление заквасок в специальных лабораториях
- •15.6. Приготовление и применение заквасок в производственных условиях
- •15.7. Требования к молоку, используемому для производства заквасок
- •15.8. Перспективные способы приготовления и применения заквасок
- •15.9. Научная разработка заквасок и совершенствование их качества
- •15.10. Пороки заквасок
- •15.11. Микробиологический контроль качества заквасок
- •Глава 16 микробиология кисломолочных продуктов
- •16.1 Диетические и лечебные свойства кисломолочных продуктов
- •16.2. Источники микрофлоры кисломолочных продуктов
- •16.3. Продукты, приготовляемые с использованием многокомпонентных заквасок
- •16.4. Продукты, приготовляемые с использованием мезофильных молочнокислых стрептококков
- •16.5. Продукты, приготовляемые с использованием термофильных молочнокислых бактерий
- •16.6. Продукты, приготовляемые с использованием мезофильных и термофильных молочнокислых стрептококков
- •16.7. Продукты, приготовляемые с использованием ацидофильных палочек
- •16.8. Продукты с бифидобактериями
- •16.9. Микробиологический контроль производства кисломолочных продуктов
- •Глава 17 микробиология масла
- •17.1. Условия развития микроорганизмов в масле
- •17.2. Источники микрофлоры масла
- •17.3. Бактериальная закваска для кислосливочного масла и биологическое сквашивание сливок
- •17.4. Формирование запаха масла
- •17.5. Состав микрофлоры и его изменение в процессе хранения масла
- •17.6. Пороки масла
- •17.7. Повышение стойкости масла
- •17.8. Микробиологический контроль производства масла
- •Глава 18 микробиология сыра
- •18.1. Значение микроорганизмов в сыроделии
- •18.2. Источники первичной микрофлоры сыра
- •18.3. Сыропригодность молока
- •18.4. Развитие микробиологических процессов при выработке сыра
- •18.5. Особенности микробиологических процессов при созревании различных сыров
- •18.6. Сущность биохимических процессов при созревании сыров
- •18.7. Образование рисунка сыров
- •18.8. Способы ускорения процессов созревания сыров
- •18.9. Пороки сыров
- •18.10. Микробиологический контроль производства сыров
- •Глава 19 микробиология консервированных молочных продуктов и мороженого
- •19.1. Принципы консервирования молочных продуктов
- •19.2. Стерилизованные молочные консервы
- •19.3. Сгущенные молочные консервы с сахаром
- •19.4. Сухие молочные продукты
- •19.5. Микробиология мороженого
- •Глава 20 микробиология вторичного молочного сырья
- •20.1. Молочная сыворотка
- •20.2. Пахта
- •20.3. Обезжиренное молоко
- •Глава 21 основы промышленной санитарии на предприятиях молочной промышленности
- •21.1. Понятие о гигиене и санитарии
- •21.2. Общие санитарно-гигиенические требования к предприятиям молочной промышленности
- •21.3. Санитарно-гигиенические мероприятия на предприятиях молочной промышленности
- •21.4. Личная гигиена работников
- •21.5 Санитарно-микробиологическое нормирование молочных продуктов. Граница риска
- •21.6. Микробиологический контроль производства молочных продуктов
- •Пробиотики
- •22.1. Понятие о пробиотиках
- •22.2. Требования, предъявляемые к микроорганизмам-пробионтам
- •22.3. Механизм действия пробиотиков
3.5. Катаболизм (дыхание) микроорганизмов
Дыхание (биологическое окисление) - сложный процесс окисление различных, преимущественно органических соединений, сопровождающийся расщеплением их до более простых веществ и выделением энергии.
Сущность дыхания микроорганизмов заключается в совокупности многочисленных биохимических реакций, обусловливающих перенос электронов, окисление субстрата и освобождение энергии, происходящее внутри клетки.
Различают два типа биологического окисления: прямое и непрямое
При прямом окислении неорганические вещества, такие, как молекулярный водород, оксид углерода, метан, сера, аммиак, соли азотистой кислоты, железо и др., окисляются атмосферным кислородом помощью ферментов оксидаз. При прямом окислении неорганических веществ получают энергию автотрофные почвенные бактерии.
При непрямом окислении происходит отщепление водород точнее, его электрона от донора и присоединение его к акцептор Поэтому непрямое окисление называют дегидрогенирование Непрямому окислению путем дегидрогенирования подвергаются органические вещества при помощи дегидрогеназ аэробном дегидрогенировании микроорганизмы используют в качестве конечного акцептора водорода атмосферный кислород. Водород отщепляется от донора с помощью фермента дегидрогеназы и передается акцептору не сразу, а проходит ряд промежуточных этапов.
При аэробном дегидрогенировании происходит полное и неполное окисление. В случае полного окисления конечными продуктами являются вода и диоксид углерода, происходит освобождение всей энергии. При неполном окислении высвобождается лишь часть энергии.
При анаэробном дегидрогенировании микробы используют в качестве акцепторов водорода не кислород, а азот, серу, углерод и другие соединения, образуемые при распаде субстрата, например пировиноградной кислоты. При этом водород довольно легко соединяется с азотом, серой, углеродом, которые восстанавливаются до аммиака (NH3), сероводорода ((H2S), метана (СНД))
Дегидрогенирование углеводов называют брожением, оно чаще проходит в анаэробных условиях. Конечными продуктами такого окисления являются органические кислоты, этиловый и бутиловый спирты, ацетон и другие продукты.
Таким образом, прямое окисление и дегидрогенирование приводят к одному результату - окислению субстрата, т. е. отщеплению от субстрата водорода, и присоединению его к акцептору (восстановлению).
Перенос электрона всегда сопровождается высвобождением энергии, которая немедленно утилизируется клеткой с помощью особых соединений, получивших название аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ). В них она накапливается в органических фосфатных (макроэргических) связях и расходуется клеткой по мере необходимости для синтеза клеточного вещества. Процесс этот происходит в клетках бактерий в мезосомах, а в животных клетках - в митохондриях.
По типу дыхания микроорганизмы разделяют на четыре основные группы: облигатные аэробы, облигатные и факультативные анаэробы и микроаэрофилы.
Облигатные (безусловные) аэробы растут при свободном доступе кислорода воздуха, имеют ферменты (цитохромы, цитохромокиназу и др.), обеспечивающие передачу водорода от донора (электронов субстрата) к конечному акцептору кислороду воздуха. Размножаются при наличии в атмосфере до 20 % кислорода, на питательных средах растут в верхних слоях. К ним относятся уксуснокислые бактерии, возбудитель туберкулеза, пигментные гнилостные бактерии, многие плесени и другие микроорганизмы.
Облигатные анаэробы способны к размножению только в атмосфере, свободной от кислорода, или при его содержании не более 5 %. Эти микроорганизмы не имеют цитохромов, и конечным акцептором водорода является субстрат (азотсодержащие вещества, углеводы и др.). При свободном поступлении воздуха или в атмосфере, содержащей 5 % и более кислорода, они могут погибнуть. В эту группу входят маслянокислые и пропионовокислые бактерии, гнилостные клостридии, возбудитель ботулизма, бифидобактерии и др.
Факультативные анаэробы развиваются как при доступе кислорода воздуха, так и в отсутствие его. Они имеют набор ферментов, обеспечивающий аэробный и анаэробный тип биологического окисления (дыхания). Это многочисленная группа микроорганизмов, к которым относятся молочнокислые бактерии, стафилококки, бактерии группы кишечных палочек, гнилостные бактерии рода Proteus и др.
У молочнокислых бактерий метаболизм протекает по анаэробному типу и поэтому их можно назвать облигатными анаэробами, но в связи с тем, что они могут расти в присутствии кислорода воздуха, их относят в группу, так называемых, аэротолерантных (воздухотерпимых) микроорганизмов.
Микроаэрофилы нуждаются в значительно меньшем количестве кислорода, чем аэробы. Они развиваются при концентрации кислорода в окружающей среде не более 10 %, т. е у них преобладает аэробный тип дыхания. Такие условия благоприятны для развития актиномицетов, лептоспир, возбудителя бруцеллеза, плесени рода катенулярия и др.
Одновременно с процессами окисления в бактериальной клетке протекают биохимические реакции восстановления, характер которых во многом зависит от состава среды (см. гл. 4).
