- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
Мы получим еще более глубокое понимание природы формальной логики, если рассмотрим некоторые критические аргументы против нее. Наше обсуждение традиционной логики, равно как и современной логики и математики, было нацелено на прояснение того, что в любом обоснованном умозаключении заключение с необходимостью следует из посылок. Мы в то же время отметили, заключение – это не просто переформулированные посылки: для доказательства теоремы в геометрии или определения весомости оснований для истинности данного суждения одного только знания языка недостаточно. Как следствие, у многих изучавших логику людей возникало сомнение в полезности и правильности формальной логики.
С одной стороны, было сказано, что если заключение с необходимостью следует из посылок, то оно должно «содержаться» в посылках. Если же заключение не «содержится» в посылках, то выведение одного, а не другого заключения становится случайным, а не необходимым, и из посылок тогда можно вывести даже несовместимое с ними заключение. В таком случае термин «обоснованность» будет совершенно бессмысленным. С другой стороны, говорилось, что заключение должно отличаться от посылок, а обоснованное суждение должно продвигать нас к чему-то новому и ранее неизвестному. Если бы такого продвижения не было бы, то само умозаключение было бы бесполезным. Данный парадокс умозаключения может быть сформулирован в следующей форме: если в умозаключении заключение не содержится в посылках, то само умозаключение не может быть обоснованным; а если заключение не отличается от посылок, то оно бесполезно; однако заключение не может одновременно содержаться в посылках и быть новым и неизвестным; следовательно, умозаключения не могут быть одновременно обоснованными и полезными.
Данный критический аргумент приводится довольно часто, хотя на самом деле он основывается на ряде спутываний. Нам следует проанализировать, что имеется в виду, когда утверждается, что заключение «содержится» в посылках и что заключение представляет нечто «новое». Данные вопросы тесно связаны. Рассмотрим сначала второй из них.
1. Важно различать психологическую новизну, которой может обладать заключение, и логическую новизну, которую, как полагается, оно может иметь. Заключение может показаться удивительным или неожиданным, даже если оно корректно выведено из посылок. Разумеется, большинство людей, когда имеет дело с аксиомами Евклида, не держит в голове сразу все из них. Даже в менее сложных аргументах психологическая новизна очень часто присутствует. Ниже приводится часто цитируемая история Теккерея: «Старый аббат в кругу близких подруг однажды сказал: „Опыт священника порой может быть очень странным; например, мой первый покаявшийся на исповеди грешник был убийцей". После этого в комнату вошел местный предводитель дворянства со словами: „А, аббат, вот вы где; знаете, дамы, я был первым человеком, покаявшимся у аббата, и мое признание его поразило!"». Читатель может к этому добавить, что заключение данного силлогизма, без сомнения, удивило присутствующих дам. Неожиданность заключения, выведенного из свободно заданных посылок, также иллюстрируется в задаче о двух часах, придуманной К. Л. Доджсоном. «Что лучше: часы, правильно показывающие время лишь раз в год, или часы, правильно показывающие время дважды в день? – „Разумеется, второе", – отвечаете вы. Хорошо. А теперь смотрите. У меня двое часов: одни вообще не идут, а другие каждый день отстают на минуту. Какие из двух вы предпочтете? „Без сомнения, те, что отстают на минуту", – отвечаете вы. А теперь обратите внимание: часы, отстающие на минуту в день, должны будут отстать на двенадцать часов, или на 720 минут, прежде чем они вновь покажут правильное время. Поэтому такие часы будут правильно показывать время лишь один раз за два года, тогда как стоящие часы правильно указывают время каждый раз, когда реальное время соответствует положению их стрелок, что случается дважды в день. Так что вы один раз сами себе уже противоречите».
Таким образом, можно согласиться с тем фактом, что человеку не всегда известно заключение из того или иного аргумента, даже если ему известны посылки, особенно если для выведения заключения требуется провести длинную цепочку умозаключений. Вполне возможно, что если бы дела так не обстояли, то мы бы не прибегали к умозаключениям, а дедукция была бы не нужна. Однако все это не имеет никакого отношения к вопросу об обоснованности умозаключения. Умозаключение может быть обоснованным, даже если заключение вполне известно. Преподавателям геометрии не кажется, что обоснованность доказательства теоремы Пифагора исчезает на том лишь основании, что они точно знают, что последует за каждым из шагов этого доказательства. Если читатель, в отличие от Евклида, «непосредственно видит», что во второй части евклидового утверждения 29 (прямая, пересекающая две параллельные прямые, делает внутренние углы одной и той же стороны равными двум прямым углам) утверждается то же самое, что и в его пятом постулате (если прямая, пересекая две другие прямые, делает внутренние углы одной и той же стороны меньше, чем два прямых угла, то эти две прямые пересекутся именно на этой стороне), то ему не потребуется вырабатывать доказательство для этой теоремы, как это сделал Евклид. Однако, несмотря на это, данная теорема является необходимым следствием допущения.
Вопрос психологической новизны, таким образом, не является вопросом логики. С другой стороны, термин «логическая новизна» должен обозначать логическую независимость того, что именуется «заключением», от того, что считается его посылками. Также ясно и то, что в обоснованном аргументе заключение, вследствие своей зависимости от посылок, не может обладать логической новизной.
2. Теперь нам следует рассмотреть, что имеется в виду, когда утверждается, что заключение «содержится» в посылках. Во-первых, термин «содержаться» связан с пространственной метафорой. Разумеется, никто не имеет в виду, что заключение содержится или присутствует в посылках подобно тому, как в комнате присутствует стол, или даже тому, как в яйце содержится курица. Во-вторых, мы уже отбросили точку зрения, согласно которой заключение психологически или явно присутствует в нашем сознании, когда мы рассматриваем посылки, из которых его выводим. Какое же значение можем мы в таком случае придать утверждению о том, что заключение содержится в посылках? Только следующее: в обоснованном аргументе заключение имплицируется посылками. Парадокс исчезает, если понять, что отношение импликации между суждениями таково, что в случае его замены каким-то другим аналогичным понятием, обладающим некоторыми из его формальных свойств, сразу возникает спутывание.
Дополнительные замечания должны развеять затруднения, которые все еще могут мучить читателя. Суждения имплицируют друг друга, а наши умозаключения являются обоснованными в силу такого объективного отношения, как импликация. Мы можем делать умозаключения, но мы не делаем, а всего лишь открываем импликации. Конечно, логика не детерминирует то, какие именно суждения мы выведем из всех возможных имплицируемых суждений на основе ряда допущений. Это уже зависит от наших внелогических интересов и наших интеллектуальных способностей.
В этой связи также удобно различать конвенциональное значение суждения и суждения, которые этим суждением имплицируются. Разумеется, в определенном смысле данное различие является надуманным, поскольку, после того как мы открываем некоторые из имплицируемых суждений, они становятся частью значения посылок. Так, открыв, что аксиомы Евклида имплицируют, что сумма углов треугольника равняется двум прямым углам, мы зачастую начинаем рассматривать эту теорему как характеризующую всю суть аксиом. Тем не менее, поскольку четкого и окончательного разграничения того, что считается конвенциональным значением суждения и его логическими следствиями не проведено, подобное различие на практике признается. Начинающий изучать геометрию в некоторой степени понимает, что имеется в виду, когда говорится, что через точку, не лежащую на прямой, может быть проведена лишь одна прямая, параллельная данной, даже если он и не знает, какие еще суждения он имплицитно принимает, соглашаясь с данным утверждением. Поэтому договоримся обозначать термином «конвенциональное значение» тот минимальный объем значения, который требуется группе исследователей для того, чтобы указывать на одно и то же суждение. Таким образом, конвенциональное значение суждения «все люди смертны» может заключаться в том, что класс людей принадлежит классу смертных. В таком случае значение суждения «все бессмертные являются не-людьми» не представляет часть конвенционального значения исходного суждения, а является значением имплицируемого им суждения.
Данное различие полезно, ибо позволяет дать ясный ответ на сформулированный парадокс. Поскольку в сознании рассуждающего человека предстает лишь конвенциональное значение посылки, конвенциональные значения некоторых из имплицируемых суждений могут им упускаться так, что, будучи обнаруженными среди имплицируемых суждений, могут породить чувство новизны. С другой стороны, с точки зрения отношений между конвенциональными значениями значение имплицируемых суждений всегда связано с («содержится в») значением посылок.
Иногда считается, что тезис о том, что в выводе заключение всегда существенным образом связано с посылками, так что последние не могут быть истинными, если первые ложны, препятствует возможности физического изменения или физической новизны. Адекватное рассмотрение данного тезиса приведет нас к вопросам метафизики. Однако читатель может без труда отвергнуть подобную интерпретацию, если вспомнит, что отношения импликации зависят не от эмпирической истинности посылок, а от логических отношений между посылками и заключением. Данные отношения применимы и к изменяющемуся миру, ведь мы можем знать об изменении только относительно определенных констант. Вопрос о том, существует ли в физическом мире хоть что-то постоянное, ставится как из эмпирических, так и из логических соображений. Однако если оказывается, что определенное суждение физической науки на самом деле истинно, то оно, тем самым, указывает на некоторые примеры структурной тождественности, являющиеся общими характеристиками различных или следующих друг за другом состояний.
