Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коэн Моррис. Введение в логику и научный метод...doc
Скачиваний:
13
Добавлен:
01.07.2025
Размер:
1.47 Mб
Скачать

Вероятность совместного появления событий

Какова вероятность того, что орел выпадет два раза, если бросить монету тоже два раза? Это событие является сложным, а его компоненты – это орел при первом броске и орел при втором. Если данные события независимы, и если вероятность выпадения орла в каждом случае равна равна ½ то, согласно исчислению вероятности, вероятность совместного появления событий (выпадения орла при двух бросках) является произведением вероятности выпадения орла при каждом из бросков, т. е. ½× ½ или ¼ Мы сможем увидеть, почему данный результат является необходимым следствием сделанных допущений, если пронумеруем все события, являющиеся возможными при двух бросках монеты. Так, мы получаем: ОО, ОР, РО, РР , где порядок букв в каждой из групп обозначает одну возможную последовательность выпадения орла и решки. Таким образом, получается, что при сделанных допущениях имеется 4 равновероятные возможности и только одна, ОО , является благоприятной. Следовательно, согласно полученному результату, вероятность выпадения двух орлов равна ¼. Вообще, если а и Ь являются двумя независимыми событиями, то Р ( а ) – вероятность первого события, Р ( b ) – вероятность второго, а вероятность их совместного наличия – Р ( ab ) = Р ( а ) × Р ( b ).

При вычислении вероятности сложных событий необходимо проявлять внимание к тому, чтобы перечислить все возможные альтернативы. Если нам нужно установить вероятность выпадения по меньшей мере 1 орла при двух бросках монеты, то перечисление альтернатив дает 3 благоприятных события. Следовательно, вероятность получения по меньшей мере 1 орла равна ¾ Видные ученые допускали ошибки вследствие того, что не учитывали все возможные альтернативы. Например, согласно Д′Аламберу, вероятность выпадения по меньшей мере одного орла равна ⅔ О н перечислил возможные события как О, ОР, РР , утверждая, что если орел выпадет с первого раза, то нет необходимости продолжать броски, с тем чтобы получить, по крайней мере, одного орла. Однако данный анализ ошибочен, поскольку перечисленные им возможные события не являются равновероятными: первая альтернатива заключает в себе возможность двух различных событий, являющихся равновероятными с остальными.

Вероятность совместного появления двух событий иногда может высчитываться, даже если события не являются полностью независимыми. Допустим, в урне находится 3 белых и 2 черных шара, и предположим, что вероятность извлечения каждого из шаров одинакова по сравнению с остальными. Какова вероятность извлечения 2 белых шаров один за другим при первых двух попытках, если шары не заменяются при второй попытке? Изначально вероятность извлечения белого шара равна ⅗ Если извлечен белый шар (и при этом не заменен новым), то в урне остается два белых и два черных шара. Вероятность извлечения второго белого шара, если первый извлеченный шар был белым , равна 2∕4. Из этого следует, что вероятность извлечения двух белых шаров при описанных условиях равна ⅗× ½ или же 3∕10 [48] . Вообще Р ( а ) является вероятностью события а , а Ра(Ь) является вероятностью появления события Ь при появлении события а. Вероятность совместного появления событий: Р(аЬ) = Р(а) х Ра(Ь).