Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коэн Моррис. Введение в логику и научный метод...doc
Скачиваний:
13
Добавлен:
01.07.2025
Размер:
1.47 Mб
Скачать

§ 2. Математика, или исчисление, вероятности

Современное изучение вероятности началось, когда шевалье де-Мере, известный картежник XVII века, поинтересовался у своего друга, праведного Паскаля, как лучше делать ставки при игре в кости. С тех пор основное количество дискуссий относительно вероятности посвящено вопросам, на которые можно дать ответ в нумерической форме: какова вероятность выпадения решки три раза из четырех бросков? Какова вероятность выпадения на костях семерки при одном броске? Такого рода проблемы, равно как и более сложные, исследовались математиками. На сегодняшний день практически в каждой области физики и в некоторых областях химии и биологии требуется использование исчисления вероятности. Мы же подробно исследуем более простые вопросы вероятности и поговорим о том, чем ограничивается математический подход.

Начнем с ограничений. Математика – это дисциплина, изучающая необходимые следствия из любого множества допущений. При таком понимании математика не имеет дела с истинностью или ложностью тех оснований, следствия которых она изучает. В этом отношении логика и математика неразличимы.

Из сказанного следует, что ни одна чисто математическая теория не может определить степень вероятности истинности любого суждения, которое связано с конкретными положениями дел. Она может определить вероятность истинности суждения, когда в явной форме предложены определенные допущения относительно этого суждения. Математика может показать нам, каковы необходимые следствия этих допущений, но она не может определить истинность или ложность самих этих допущений. Следовательно, теория вероятности может быть чисто математической, только если она ограничивается вопросами необходимого вывода. Это имеет место, если рассматривать теорию вероятности как часть чистой математики. Мы коротко рассмотрим элементарные теоремы этой теории потому, что такой подход уже стал традиционным, а также потому, что в использовании теорем исчисления вероятности проявляется природа научного метода.

Начнем с очень простой задачи. Что понимается под «математической вероятностью» выпадения орла при бросании монеты? Воспользуемся общепринятой терминологией. Вместо того чтобы говорить о вероятности истинности суждения «эта монета упадет орлом вверх», мы будем говорить о вероятности события выпадения орла. «Орлом» и «решкой» называются возможные события, или возможные альтернативы. Если мы заинтересованы в выпадении орла, то орел считается благоприятным событием, все остальные события – неблагоприятные. Математическая вероятность определяется в таком случае как отношение, в котором числителем является количество возможных благоприятных событий, а знаменателем – общее количество возможных событий (т. е. сумма благоприятных и неблагоприятных событий), с учетом того что все возможные события равновероятны. Таким образом, если монета имеет 2 стороны и может упасть только на них, демонстрируя тем самым орла или решку, и если выпадение сторон равновероятно, то вероятность выпадения орла будет ½ Вообще если f – число благоприятных событий, а u – число неблагоприятных событий, и если события являются равновероятными, то вероятность благоприятного события определяется как f / ( f + u ). Очевидно, что такая дробь всегда будет правильной и что ее значением будут величины от 0 до 1 включительно.

Вероятность, равная 0, означает, что событие невозможно; вероятность, равная 1, означает, что оно произойдет с необходимостью.

Условие равновероятности событий имеет фундаментальную важность, но дать ему определение крайне сложно. Данное условие становилось источником серьезных ошибок, некоторые из которых мы рассмотрим ниже. В общем смысле, речь идет о том, что одно возможное событие должно происходить так же часто, как и другое. При этом нередко считается, что два события являются равновероятными, если мы не знаем причины, почему должно произойти одно из них, а не другое. Тем не менее, какими бы ни были сложности в установлении равновероятности набора возможных событий, поиск критериев равновероятности не входит в задачу математика, поскольку математик имеет дело с необходимыми следствиями такого допущения, безотносительно того, истинно оно или нет. Важность этого условия станет ясной, если мы зададимся вопросом о вероятности выпадения шестерки на игральной кости. Мы можем рассуждать следующим образом: существует две возможности: выпадение шестерки и выпадение чего-то другого; одна из возможностей является благоприятной, следовательно, вероятность равна ½. Однако данный ответ может оказаться ложным, если мы не сделаем допущения о том, что данные две альтернативы являются равно возможными. Это материальное допущение, как правило, не делается, поскольку считается, что возможность выпадения чего-то другого, кроме шестерки, состоит из пяти дополнительных альтернатив (выпадение единицы, двойки и т. д.), каждая из которых является равновероятной с выпадением шестерки. Следовательно, если все шесть сторон считаются равновероятными, то вероятность выпадения шестерки равна ⅙.

Основная задача исчисления вероятности заключается в определении вероятности комплексного события на основании знания о вероятности составляющих этот комплекс событий. Два события считаются независимыми, если наличие или отсутствие одного не оказывает никакого влияния на наличие другого. Утверждение о том, что два события на самом деле независимы, является материальным допущением, которое следует формулировать в явной форме. Много серьезных ошибок происходит из применения исчисления вероятности в тех случаях, когда независимость событий предполагается без достаточных на то оснований или когда данное условие вообще игнорируется.