- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
§ 3. Структурная тождественность, или изоморфизм
Теперь мы хотим показать, что абстрактное множество, подобное рассмотренному в предыдущем параграфе, может обладать более чем одной конкретной репрезентацией, и что эти различные репрезентации, являясь крайне непохожими по своему материальному содержанию, будут тождественными относительно логической структуры.
Допустим, существует банк, состоящий из семи партнеров. Чтобы обеспечить себя экспертной информацией относительно различных ценных бумаг, партнеры решают сформировать семь комитетов, каждый из которых будет исследовать отдельную область. При этом они соглашаются, что каждый из партнеров будет председателем одного комитета и что каждый из партнеров будет членом трех, и только трех, комитетов. Ниже приводится таблица комитетов и их членов, где для каждого комитета первый из перечисленных членов является председателем:
Видно, что данная таблица выполняет семь аксиом, если класс S рассматривать как банк, его элементы как партнеров, а 1-классы – как различные комитеты.
Предложим еще одну интерпретацию, которая, на первый взгляд, не имеет ничего общего с уже предложенными примерами. В приведенной ниже фигуре на каждой из семи линий расположено по три точки. Одна из линий согнута. Пусть каждая точка представляет элемент S, а каждое множество из трех точек, лежащих на одной линии, представляет 1-класс. Тогда выполняются все семь допущений.
Данная геометрическая модель является примером тех же формальных отношений, что присутствуют и в наборе чисел, и в таблице банковских комитетов, которую мы уже рассмотрели. Третья репрезентация находится на с. 214.
Рассмотрим три данные репрезентации. Мы обнаруживаем, что, во-первых, мы можем сопоставить один к одному каждый из элементов одной интерпретации с элементами других двух. Во-вторых, каждое отношение между элементами в одной интерпретации соответствует отношению с теми же логическими свойствами между соответствующими элементами других двух интерпретаций. Так, например, элемент 0 из нумерической интерпретации может быть сопоставлен с точкой А в геометрической интерпретации, а также с мистером Адамсом из банковской конторы; элемент 1 соответствует точке В, а также мистеру Брауну и т. д. А трехместное отношение между числами 0, 1, 3 (с. 218), в силу которого они принадлежат одной и той же группе, соответствует отношению между точками ABD, в силу которого они лежат на одной линии, а также отношению между Адамсом, Брауном и Смитом, в силу которого они находятся в одном комитете и т. д.
Две или более системы, связанные подобным отношением, называются изоморфными , или обладающими тождественной структурой или формой . Теперь мы можем предложить общее определение термину «изоморфизм» . Даны два класса: S с элементами a, b, c … и S′ с элементами a ′ , b ′ , c ′…; допустим, что элементы S могут быть взаимно однозначно сопоставлены с элементами S ′, так что, например, а соответствует а ′, b соответствует b ′ и т. д. Тогда, если для каждого отношения R между элементами S (таким, что, например, aRb ) существует отношение R ′ между соответствующими элементами S ′ ( a ′ R ′ b ′), то данные два класса являются изоморфными .
На данном этапе мы достаточно подготовлены для того, чтобы усвоить огромную важность математического метода как инструмента естественных наук. Во-первых, гипотеза, или набор допущений, может изучаться на предмет ее импликаций без постановки вопросов материальной истинности или ложности. Данное обстоятельство важно для понимания того, какие обязательства мы принимаем, соглашаясь с такой гипотезой. Во-вторых, абстрактно сформулированная гипотеза может обусловить более чем одну конкретную репрезентацию. Следовательно, изучая чистую математику, мы изучаем возможные структуры многих конкретных ситуаций. Тем самым мы обнаруживаем тот неизменный, или инвариантный фактор, присутствующий в ситуациях, которые по-разному ощущаются и претерпевают изменения. Наука иногда определяется как поиск системы (порядка или постоянства) среди непохожести и изменения. Идея изоморфизма является наиболее ясным выражением того, что имеется в виду под подобной системой.
Некоторые примеры изоморфизма хорошо известны. Обычная карта является полезным инструментом, поскольку отношения между изображенными на ней точками имеют структуру, тождественную отношениям между пунктами на местности, которой соответствует карта. В физике мы можем наблюдать, как формула обратных квадратов применяется относительно электрического притяжения и отталкивания, равно как и относительно гравитационной силы. Это возможно потому, что данные различные предметные области обладают тождественной формальной структурой в отношении исследуемых свойств. Физика также обнаруживает, что этот же набор принципов применим относительно движения планет, падения слезинки и колебания маятника. Именно обнаруживаемый в различных предметных областях изоморфизм обусловливает современную теоретическую науку. Элементарное изображение «словаря» по переводу теорем евклидовой геометрии в теоремы неевклидовой геометрии можно найти в книге А. Пуанкаре «Основания науки». С абстрактной точки зрения эти разные геометрии обладают тождественной структурой.
Следует отметить, что две системы могут не обладать структурами, тождественными на всем их масштабе, но при этом иметь общие свойства. Евклидовы и неевклидовы геометрии обладают многими общими теоремами, и в то же время некоторые теоремы одной системы формально несовместимы с некоторыми теоремами другой системы. Из сказанного следует, что целиком две системы могут быть несовместимыми друг с другом, но при этом обладать общей подсистемой. Это можно проиллюстрировать следующим образом. Рассмотрим систему, детерминируемую аксиомами 1′—7′ Рассмотрим также систему, получаемую при замене 7′ на допущение 7′′ ни один l‑класс не содержит более четырех элементов S . Данные две системы не являются изоморфными, что видно из сравнения репрезентации первой системы (с. 218) с репрезентацией второй системы (с. 220). Тем не менее, все теоремы в обеих системах, выводимые из первых шести аксиом, будут одними и теми же. Система, детерминируемая аксиомами 1′—6′, таким образом, является общей подсистемой для несовместимых систем, детерминируемых аксиомами 1′—7′ с одной стороны, и аксиомами 1′—7′′—с другой.
Проведенное наблюдение имеет большую важность. Исследования в естественных науках зачастую подталкивают нас к мнению, что теория является истинной, потому что некоторое следствие этой теории было подтверждено. Тем не менее, точно такое же следствие может быть выведено и из альтернативной теории, несовместимой с данной. Поэтому мы не можем обоснованно утверждать истинность ни одной из двух теорий. Однако, будучи достаточно внимательными, мы можем обнаружить те допущения, которые являются общими для обеих теорий и на которые опираются тождественные следствия. Тогда можно будет установить также и то, какие из допущений, в силу которых данные теории являются разными, не согласуются с экспериментальными данными.
В отношении дедуктивных систем следует сделать еще одно замечание. Любая система по необходимости является абстрактной: она представляет структуру некоторых отдельных отношений и поэтому в ней не должны учитываться какие-либо другие отношения. Поэтому системы, изучаемые в физике, не включают в себя системы, исследуемые в биологии. Более того, как мы уже могли убедиться, система является дедуктивной не в силу какого-либо конкретного значения ее терминов, а в силу универсальных отношений между ними. Специфическое качество вещей, на которые могут указывать термины, само по себе не играет никакой роли в системе. Так, в теории теплоты не учитываются уникальные чувственные качества, демонстрируемые явлениями теплоты. Дедуктивная система, таким образом, является абстрактной вдвойне: она абстрагируется от специфических качеств предметной области, а также выбирает одни отношения и пренебрегает другими. Из этого следует, что различных систем может быть очень много, и каждая из них может быть исследована отдельно от остальных. Не исключено, что такая множественность систем может конституировать множество подсистем, относящихся к одной всеобъемлющей системе. Однако у нас недостаточно оснований, чтобы считать, что такая всеобъемлющая система на самом деле имеет место. В любом случае, для адекватного исследования любой из менее содержательных систем знания такой всеобъемлющей системы не требуется. Выходит, что человеческое знание о естественном мире возможно только потому, что естественный мир можно исследовать с помощью множества относительно автономных систем.
