- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
Аксиомы количества
1. Средний термин должен быть распределен, по крайней мере, в одной из посылок.
2. Термин, нераспределенный в посылке, не может быть распределенным в заключении.
Аксиомы качества
3. Из двух отрицательных посылок нельзя сделать никакого заключения.
4. Если одна посылка является отрицательной, заключение должно быть отрицательным.
5. Если ни одна посылка не является отрицательной, заключение должно быть утвердительным.
Данные аксиомы вместе с принципами условного умозаключения достаточны для того, чтобы целиком построить теорию категорического силлогизма. Аксиомы не являются независимыми друг от друга, поскольку некоторые из них можно вывести из других. Однако, несмотря на это, мы будем рассматривать все эти правила в качестве аксиоматического базиса нашего анализа.
§ 4. Общие теоремы силлогизма
На данном этапе мы докажем четыре теоремы.
Теорема I. Число распределенных терминов в заключении должно быть, по крайней мере, на один меньше, чем общее число распределенных терминов в посылках.
Доказательство. Число распределенных терминов в заключении не может быть больше, чем общее число распределенных терминов в посылках (аксиома 2).
Средний термин, который должен быть распределенным, по крайней мере, в одной из посылок (аксиома 1), не входит в заключение (определение среднего термина).
Следовательно, заключение должно содержать, по крайней мере, на один распределенный термин меньше, чем посылки.
Теорема II. Если две посылки являются частными суждениями, то из них нельзя получить заключения.
Доказательство. Два частных суждения в посылках могут быть а) оба отрицательными, Ь) оба утвердительными, с) одно утвердительным, а другое отрицательным.
a. Если обе посылки – отрицательные, то заключения быть не может (аксиома 3).
b. В частноутвердительном суждении ни один термин не является распределенным. Если обе посылки являются частноутвердительными суждениями, то в них не содержится распределенных терминов. Следовательно, из них не может следовать заключения (аксиома 1).
c. В частноутвердительном суждении нет распределенных терминов, а в частноотрицательном – только один. Поэтому посылки содержат один, и только один, распределенный термин. Следовательно, если существует заключение, то оно не может содержать нисколько распределенных терминов (теорема I). Однако поскольку одна посылка является отрицательной, заключение должно быть отрицательным (аксиома 4). Следовательно, по крайней мере один термин в заключении должен быть распределенным. Допущение о том, что заключение существует, требует принятия того, что в нем одновременно не содержится ни одного распределенного термина и что в нем содержится, по крайней мере, один распределенный термин. Это абсурдно. Следовательно, заключение не существует.
Теорема III. Если одна посылка является частным суждением, заключение должно быть частным суждением.
Доказательство. Посылки не могут быть вместе частными суждениями (теорема II). Следовательно, они должны различаться по количеству и быть а) оба отрицательными, Ь) оба утвердительными или с) одно утвердительным и одно отрицательным.
a. Если обе посылки являются отрицательными суждениями, то заключения не существует (аксиома 3).
b. Одна посылка является общеутвердительным суждением, другая – частноутвердительным. В общеутвердительном суждении распределенным является лишь один термин, в частноутвердительном суждении распределенных терминов нет. Поэтому посылки содержат не более одного распределенного термина. Следовательно, заключение, если таковое существует, не содержит распределенных терминов (теорема I). Однако общее суждение содержит, по крайней мере, один распределенный термин. Поэтому заключение должно быть частным суждением.
c. Можно различить два случая: α) общее суждение является отрицательным, частное – утвердительным; β) общее суждение является утвердительным, частное – отрицательным.
α. В общем суждении распределены оба термина, в частном – распределенных терминов нет. Поэтому в посылках распределены два термина,
β. В общем суждении распределен один термин, в частном – тоже один. Поэтому в посылках распределено два термина. Как в первом, так и во втором случае посылки содержат два, и только два, распределенных термина. Заключение, если оно существует, не может содержать более одного распределенного термина (теорема I). Заключение должно быть отрицательным (аксиома 4), и его предикат, следовательно, должен быть распределенным. Поэтому его субъект не может быть распределенным, а само заключение должно быть частным суждением.
Теорема IV. Если бо′льшая посылка является частноутвердительным суждением, а меньшая посылка – общеотрицательным суждением, то заключения не существует.
Доказательство . Поскольку, согласно допущению, меньшая посылка является отрицательным суждением, заключение, если оно существует, должно быть отрицательным суждением (аксиома 4), а его предикат, являющийся большим термином, должен быть распределенным. Поэтому больший термин должен быть распределенным в большей посылке (аксиома 2). Однако в частноутвердительном суждении не распределен ни один термин. Следовательно, заключения не существует.
Приведенные пять аксиом и данные четыре теоремы, которые мы строго доказали с помощью этих аксиом, позволяют нам перечислить все возможные виды обоснованного силлогизма. Читателю следует обратить внимание на природу нашего доказательства: было показано, что теоремы являются необходимым следствием аксиом, таким, что если принимаются аксиомы, то во избежание противоречия также должны приниматься и данные теоремы.
