- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
Умозаключение посредством обратного отношения
Из суждения «Чикаго расположен к западу от Нью-Йорка» можно обоснованно вывести суждение «Нью-Йорк расположен к востоку от Чикаго», из суждения «Сократ был учителем Платона» – суждение «Платон был учеником Сократа», из «семь больше пяти» – «пять меньше семи». Каждая из приведенных пар суждений представляет два эквивалентных суждения. Такие умозаключения имеют следующую форму: если а находится к Ь в определенном отношении, Ь находится к а в обратном отношении.
Эквивалентность сложных суждений
На данном этапе нам предстоит изучить, что такое эквивалентные формы сложных суждений.
Рассмотрим условное суждение «если треугольник – равнобедренный, то углы у его основания равны». Утверждать это суждение, как мы уже знаем, означает утверждать, что истинность антецедента предполагает истинность консеквента, или что не может быть такого, чтобы антецедент был истинным, а консеквент – ложным. Следовательно, в данном условном суждении утверждается, что конъюнктивное суждение «треугольник является равнобедренным, и углы при его основании неравны» ложно. Или же, что строго дизъюнктивное суждение «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны» является истинным. Таким образом, из условного суждения мы можем вывести дизъюнкцию.
Более того, из строгой дизъюнкции мы также можем вывести условное суждение. Если дано суждение «неверно, что треугольник является равносторонним и вместе с этим углы у его основания неравны», то истинность одного дизъюнкта несовместима с истинностью другого: если один дизъюнкт истинен, другой должен быть ложным. Следовательно, из этого строго дизъюнктивного суждения мы можем вывести суждение «если треугольник является равнобедренным, то углы у его основания равны». Таким образом, может быть найдена строгая дизъюнкция, эквивалентная условному суждению.
Сказанное выше можно записать, используя введенные нами символы:
[(Треугольник является равнобедренным) ⊃ (углы у его основания равны)] ≡ [(Треугольник является равнобедренным) .(углы у его основания равны)′′
Из данного рассуждения также становится видно, как мы можем вывести эквивалентное условное суждение из любого другого условного суждения. Если в эквивалентной строгой дизъюнкции предполагается, что второй дизъюнкт является истинным, то первый дизъюнкт должен быть ложным. Следовательно, мы можем вывести суждение «если углы у основания треугольника неравны, то треугольник не является равнобедренным». Мы можем записать:
[(Треугольник является равнобедренным) ⊃ (углы у его основания равны)] ≡ [(Углы у основания треугольника равны)′⊃(треугольник является равнобедренным)′.
Данные эквивалентные условные суждения считаются противопоставленными (контрапозитивными) друг другу.
Рассмотрим (нестрогую) дизъюнкцию «треугольник является равнобедренным или углы у его основания равны». Утверждать данное суждение значит утверждать, что, по крайней мере, один из дизъюнктов является истинным. Поэтому, если бы один из дизъюнктов был ложным, другой должен был бы быть истинным. Следовательно, мы можем заключить из данной дизъюнкции условное суждение «если треугольник является равнобедренным, то углы у его основания равны». Более того, данная дизъюнкция может быть выведена из данного условного суждения. Это условное суждение эквивалентно суждению «неверно, что треугольник является равнобедренным и вместе с этим углы у его основания неравны», в котором утверждается, что, по крайней мере, один из дизъюнктов должен быть ложным. Из данной дизъюнкции мы можем вывести суждение «треугольник не является равнобедренным или углы у его основания равны». Мы можем записать данную эквивалентность:
[(Треугольник является равнобедренным)′∨ (углы у его основания равны)] ≡ [(Треугольник является равнобедренным) ⊃ (углы у его основания равны)].
Из этого следует, что для любого условного суждения существует эквивалентное дизъюнктивное суждение, эквивалентное строго дизъюнктивное суждение, а также эквивалентное условное суждение. Похожее утверждение может быть сделано и относительно любого дизъюнктивного суждения и любого строго дизъюнктивного суждения. С другой стороны, конъюнкция не является эквивалентной ни одной из трех других форм сложных суждений.
Теперь приведем эквивалентные суждения для суждения «если он счастлив в браке, то он не бьет свою жену». Этими суждениями являются: «если он бьет свою жену, то он не является счастливым в браке», «он не является счастливым в браке или он не бьет свою жену» и «неверно, что он счастлив в браке и вместе с этим он бьет свою жену». В символьной записи данные суждения выглядят следующим образом:
[(Он счастлив в браке) ⊃ (он не бьет свою жену)] ≡ [(Он не бьет свою жену)′⊃ (он счастлив в браке)′ ≡ [(Он счастлив в браке)′∨ (он не бьет свою жену)] ≡ [(Он счастлив в браке) . (он не бьет свою жену)′]′
Данные эквивалентности можно выразить более компактно, а формы эквивалентных суждений – более ясно, если принять еще некоторые конвенции относительно символов. Пусть р означает антецедент условного суждения, a q – его консеквент. Любое условное суждение может быть формализовано как ( р ⊃ q ). Данные эквивалентности тогда могут быть записаны следующим образом:
( р ⊃ q ) ≡ ( q ′ ⊃ р ′) ≡ ( р ′∨ q ) ≡ ( p . q ′)′
В главе VII мы рассмотрим эквивалентности между системами суждений. Однако на данном этапе можно предложить пример двух суждений, являющихся эквивалентными в силу своего места в определенной системе. Пусть р = «в физике Ньютона свет отражается от поверхности так, что угол падения равен углу отражения» и пусть q = «в физике Ньютона свет отражается от поверхности так, что его путь является минимальным». Суждения р и q эквивалентны.
