- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
Логическая импликация является формальной
То обстоятельство, что связанные с суждением логические импликации остаются неизменными, независимо от того, оказалось ли это суждение истинным или ложным, а также то, что обоснованность таких импликаций устанавливается через невозможность истинности посылок при ложности следствий, тесным образом связано с так называемой формальной природой логики.
Что же мы имеем в виду под словом «формальная»? Читателю, без сомнения, приходилось при определенных обстоятельствах заполнять какие-нибудь официальные бланки, например, заявление при поступлении на новую должность, договор об аренде, платежное поручение или декларацию о подоходном налоге. Очевидно, что во всех этих случаях незаполненный бланк сам по себе не является заявлением, договором, поручением или декларацией. Однако каждый такой документ составлен в соответствии со структурой и условиями, приведенными в незаполненном бланке. Последний олицетворяет упорядоченность или фиксированную форму, которой должны обладать все подобные документы, для того чтобы считаться действительными. Вообще форма – это то, в чем согласуются несколько объектов или операций (являющихся различными в других отношениях). Объекты могут быть разными, но форма остается той же самой. Так, формальной называется любая общественная церемония или действие, которое различные индивиды должны выполнять одним и тем же способом, если они занимают одну и ту же должность или пост. Логическая импликация также является формальной в том смысле, что она имеет силу для всех суждений, безотносительно того, насколько они разные, при условии, что они находятся друг к другу в определенном отношении. Рассмотрим одно из вышеприведенных доказательств: «Браун является несовершеннолетним; ни один несовершеннолетний не может голосовать; следовательно, Браун не может голосовать». Здесь импликация не зависит ни от какой особенности Брауна, кроме той, что он в действительности является несовершеннолетним. Если вместо Брауна подставить любого другого человека, то импликация все равно останется обоснованной. Данную истину мы можем обозначить в следующей записи: «X является несовершеннолетним, ни один несовершеннолетний не может голосовать, следовательно, X не может голосовать». Здесь X обозначает любого представителя из множества любой величины. Можно заметить, что и слово «несовершеннолетний» может быть заменено любым другим термином, например, таким, как «осужденный преступник» или «иностранец», без нарушения обоснованности аргумента. Таким образом, аргумент «Если X является Y, и ни один Y не может голосовать, то X не может голосовать» сохраняется безотносительно того, что мы подставим вместо У. Теперь мы можем осуществить третий шаг и убедиться не только в том, что логическая импликация не зависит от объектов, обозначаемых как X и У, но и в том, что термин «не может голосовать» также может быть заменен на что угодно (при условии, что это что-то в посылках и заключении будет одним и тем же). Таким образом, мы получаем формулу: «Если X является Y, и все Y являются Z [5] , то X является Z», которая является истинной, независимо от того, что обозначают X, Y и Z. С другой стороны, было бы ошибкой утверждать, что из суждения «Все парижане – европейцы, и все парижане – французы» следует суждение «Все парижане – французы». Дело в том, что если в общей форме данного аргумента («Все X являются У\' и все Z являются Y, следовательно, все X являются Z») мы вместо слова «парижане» подставим слово «бельгийцы», то получим аргумент, в котором посылки будут истинными, а заключение – ложным. Сходным образом мы можем утверждать импликацию «если Сократ старше Демокрита, и Демокрит старше Протагора, то Сократ старше Протагора». Истинность данной импликации будет сохраняться, независимо от того, какие люди будут подставлены вместо этих трех, с учетом того, что мы сохраним форму «X является старше Y, и Y является старше Z, следовательно, X старше Z». С другой же стороны, из суждения «А находится справа от В, и В находится справа от С» с необходимостью не следует «А находится справа от С». Если три человека сели в круг, можно сказать, что А находится слева от С, даже если он находится справа от Б, а Б, в свою очередь, справа от С. Предметом логики является исследование более точных правил для отличия обоснованных форм аргумента от необоснованных. На данном этапе следует отметить, что правильность любого утверждения импликации между суждениями зависит от их формы или структуры. Любая форма аргумента, допускающая подстановки истинных посылок одновременно с ложными заключениями, является необоснованной, и утверждение импликации в таком случае будет неверным.
К сказанному выше следует добавить еще два замечания:
1. Такое более общее утверждение или формула не является некой поддерживающей силой или же императивом, существующим ранее любого его конкретного воплощения. Каждый отдельный аргумент является обоснованным в силу импликации, которая имеет место между его посылками и заключением, а не в силу некого существующего общего правила, являющегося формой, абстрактно отражающей именно то, что существенно для обоснованности аргумента. Между объектами, о которых говорится в суждениях, существует определенное отношение, а форма – это их расположение, поэтому импликация, имеющая силу относительно одного расположения объектов, не имела бы силы относительно другого расположения.
2. Данный формальный характер импликации (и, следовательно, обоснованного умозаключения) не означает, что в формальной логике вообще не учитывается значение наших суждений. Без значений мы имели бы лишь бессмысленные значки и звуки, а не значимые утверждения или информацию, обладающую логическими следствиями. Однако поскольку в сфере возможностей логика исследует лишь отношения, являющиеся необходимыми, для нее из всех свойств объекта интерес представляет лишь его функция в конкретном аргументе. Формальные свойства должны распространяться на все объекты определенного множества.
