- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
§ 5. Формальные условия измерения
На данном этапе мы можем абстрактно сформулировать условия для измерения. Минимальные требования для использования чисел для измерения (в самом широком смысле этого слова) качественных различий представлены в первых двух условиях:
1. Если дан набор из n предметов, В1, В2… Вп, то мы должны расставить их в последовательность относительно данного качества так, чтобы между любыми двумя предметами имело место одно, и только одно, из следующих отношений: (a) Bi > Bj, (b) Bi < Bj (с) Bi = Bj. Знак «>» и обратный ему знак «<» обозначают отношение, на основе которого предметы могут выделяться как отличающиеся по степени изучаемого качества. Отношение > должно быть асимметричным.
2. Если Bi > Bj и Bj > Вк, то Bi > Вк. Это условие выражает транзитивность рассматриваемого отношения.
Данные два условия достаточны для измерения интенсивных качеств, таких, как температура или плотность. Они являются необходимыми, однако недостаточными для экстенсивного измерения. Для экстенсивного измерения нам нужен некоторый физический процесс сложения, обозначаемый знаком «+». Необходимо также экспериментально показать, что этот процесс обладает следующими формальными свойствами:
3. Если Ве + Bf= Вg, то Bf+Be = Вg.
4. Если Bi = Вi, то Bi + Bj > Вi ′.
5. Если Bi = Вi и Bj = Вi ′, то Bi + Bj = Вi ′+ Вj ′.
6. (Bi + Bj) + Bk = Bi + (Bj + Bk).
Измерение в строгом смысле возможно, только если выполнены все эти условия. Когда выполнены только первые два условия, бессмысленно делать утверждения, имплицирующие соблюдение всех шести условий. Когда мы утверждаем, что IQ одного человека равняется 150, а другого – 75, то все, что мы можем иметь в виду, – только то, что на определенной шкале для измерения интеллекта (требующей наличия специализированных способностей) один человек располагается «выше» другого. Бессмысленно говорить, что первый человек в два раза умнее или в два раза более развитый, чем другой, потому что не было открыто ни одной операции по сложению ума или развития, которая бы согласовывалась с последними четырьмя условиями, необходимыми для того, чтобы соответствующее утверждение было осмысленным.
§ 6. Количественные законы и производное измерение
Когда мы устанавливаем стандартную последовательность измерений для какого-либо качества, присущего предметам, мы измеряем любой другой пример данного качества, сравнивая его с каким-либо членом стандартной последовательности. Например, стандартная последовательность длин воплощена в платиновом метре, хранящемся в Париже при определенных физических условиях. Его более или менее точные дубликаты распространены по всему миру. Если кто-то захочет узнать длину некоего куска материи, он сопоставит этот кусок с мерой длиной в один метр или с измерительной линейкой. Таким образом, для оценки длины куска материи требуется непосредственное вынесение суждения о проведенном сравнении. Сходные процессы измерения имеют место и в случае других измеряемых качеств.
Однако измерения качеств редко осуществляются для измерения как такового. Их проводят для установления точных отношений между различными свойствами предметов. В лаборатории измерения проводятся для единственной цели – открытия количественных законов, связывающих физические свойства.
Рассмотрим один такой количественный закон. Большинство людей знакомо со свойством жидкостей и твердых тел, именуемым «плотностью». В общем, известно также и то, что именно плотность определяет их плавучесть в воде. Однако не всегда известно, каково отношение плотности к другим свойствам тела. Предположим, мы хотели бы измерить плотность следующих пяти жидкостей: бензина, спирта, воды, соляной кислоты, ртути. Мы можем считать одну жидкость, скажем, ртуть, более плотной, чем вода, если мы можем найти такое твердое тело, которое будет плавать на поверхности ртути и тонуть в воде. С помощью эксперимента мы можем показать, что плотность, определяемая таким образом, является асимметричным, транзитивным свойством и что поэтому жидкости могут быть расставлены в последовательность по увеличению плотности. В действительности порядок жидкостей будет таким же, как мы его записали выше. При этом мы обнаруживаем, что плотность не является суммируемым свойством жидкостей и что мы можем измерять ее только как интенсивное качество. Мы можем приписать числа 1, 2, 3, 4, 5 для обозначения положений жидкостей на шкале плотности. Как мы уже отмечали, данные числа являются случайными.
Однако читателю может быть известно, что плотностям разных жидкостей приписываются различные числа, которые при этом не являются случайными. Причина этого заключается в том, что многие интенсивные качества могут измеряться иными способами, а не только посредством расстановки, согласно некоторой последовательности. Плотность является одним из таких качеств.
Этот иной способ является довольно известным. Он зависит от существования численного закона между другими свойствами жидкостей, с которыми их плотность связана неизменным отношением. Когда мы взвешиваем различные объемы некоторой жидкости, скажем, воды, мы экспериментально обнаруживаем, что отношение чисел, измеряющих вес и объем жидкости, остается одним и тем же, безотносительно того, насколько большой или малый объем мы измеряем. Таким образом, мы устанавливаем количественный закон между свойствами веса и объема жидкости. Этот закон гласит: W = cV, где W является мерой веса, V – мерой соответствующего объема, ас – постоянной величиной для всех примеров одной и той же жидкости; для других же жидкостей величина с будет иной. Проведя правильный подбор единиц веса и объема, мы обнаруживаем, что с обладает значением 0,75 для бензина, 0,79 – для спирта, 1 – для воды, 1,27 для серной кислоты и 13,6 для ртути. Мы также делаем важное открытие того, что порядок этих отношений тот же самый, что и порядок плотности жидкостей, когда он устанавливается способом, использованным нами выше. Это отношение, являющееся постоянным для всех примеров однородной жидкости, может рассматриваться как мера ее плотности. Однако нам следует быть внимательными, чтобы не сказать, что плотность ртути в 13,6 раза «больше» плотности воды, поскольку плотность, безотносительно способа ее измерения, является несуммируемым свойством. Плотность можно с точностью измерить и приписать числа различным ее степеням не случайным образом только в силу существования связи между весом и объемом. Данная связь может быть выражена в виде количественного закона между отношениями, измеряемыми фундаментальными способами измерения. Плотность же может измеряться только производным методом.
Количественные законы играют очень важную роль в научных исследованиях. Открытие количественных законов между качествами, измеряемыми в строгом смысле слова, т. е. с помощью фундаментального измерения, позволяет нам точно измерять множество интенсивных качеств, таких как температура, плотность, плавучесть, эластичность или эффективность агрегатов. Только с помощью количественных законов мы можем измерять температуры отдаленных звезд или кровяное давление в артериях живых существ. Однако важно отметить, что без наличия свойств, измеряемых с помощью фундаментального процесса, количественные законы были бы невозможны, а производные измерения интенсивных свойств были бы неосуществимы. (Однако свойства, измеряемые с помощью фундаментального процесса, также могут измеряться и производным методом.) Это отчасти объясняет некоторые сложности в развитии социальных наук. Точные расчеты интенсивных свойств являются неосуществимыми, поскольку фундаментальные измерения в социальной сфере сложны, а также потому что можно отыскать лишь часть количественных законов, соединяющих такие интенсивные свойства с экстенсивными свойствами.
Количественные законы представляют определенные неизменные отношения между физическими свойствами. Наука направлена не только на установление таких законов по отдельности, но также на отыскание того, как различные количественные законы связаны друг с другом.
Предположим, к примеру, что мы позволяем двум круговым цилиндрам катиться вниз по двум различным наклонным плоскостям. Цилиндры имеют различные радиусы прямого сечения, а плоскости наклонены к горизонту под разными углами. Если мы хотим отыскать закон, соединяющий расстояние, пройденное каждым цилиндром, и время, то мы можем установить, что для первого цилиндра данный закон будет выглядеть так: d = 0,20t2, а для второго – так: d = 0,35t2. Эти законы обладают одной и той же формой. Однако количественные константы в них разные и, похоже, не связаны друг с другом.
Физика как научная дисциплина стремится открыть другие количественные законы, которые будут объяснять различие в этих количественных постоянных, и мы для этого используем другие цилиндры и другие наклонные плоскости. И это предприятие имеет успех. Физическое исследование показывает, что количественный закон поведения катящегося цилиндра может быть выражен в форме d = ft2, где величина f сама по себе является связанной с гравитационной постоянной, наклоном плоскости, коэффициентом движения, радиусом сечения цилиндра и распределением вещества в цилиндре. Таким образом, науки отыскивают все более общие неизменные законы, объясняющие многие специальные свойства составного явления. Однако подобное исследование может быть успешным только в том случае, если различные свойства тел были отделены друг от друга посредством процессов измерения.
