- •Моррис Коэн, Эрнест Нагель Введение в логику и научный метод Уважаемый читатель!
- •Об авторах Моррис Рафаэль коэн
- •Эрнест Нагель
- •Предисловие переводчика Общая характеристика книги
- •Специфика книги как учебника по логике
- •Особенности книги как произведения по философии науки
- •Специфическая природа научной теории
- •Научный реализм и критика псевдонаучной методологии
- •Издержки времени
- •Некоторые сложности перевода
- •Предисловие
- •Глава I. Предмет логики § 1. Логика и совокупность оснований
- •§ 2. Окончательное основание, или доказательство
- •§ 3. Природа логической импликации
- •Логическая импликация не зависит от истинности наших посылок
- •Логическая импликация является формальной
- •Логическая импликация как детерминация
- •§ 4. Частичное основание, или правдоподобное умозаключение
- •Обобщение, или индукция
- •Презумпция факта
- •§ 5. С чем имеет дело логика: словами, мыслями или объектами? Логика и лингвистика
- •Логика и психология
- •Логика и физика
- •Логика и метафизика знания
- •§ 6. Применение логики
- •Книга I. Формальная логика Глава II. Анализ суждений § 1. Что такое суждение?
- •§ 2. Традиционный анализ суждений Термины. Их содержание и объем
- •Форма категорических суждений
- •Количество
- •Качество
- •Исключительные и исключающие суждения
- •Распределенность терминов
- •Изображение в схемах
- •Экзистенциальная нагруженность категорических суждений
- •§ 3. Сложные, простые и родовые общие суждения
- •Сложные суждения
- •Простые суждения
- •Родовые общие суждения
- •Глава III. Отношения между суждениями § 1. Возможные логические отношения между суждениями
- •§ 2. Независимые суждения
- •§ 3. Эквивалентные суждения
- •Обращение (конверсия)
- •Превращение (обверсия)
- •Противопоставление предикату (контрапозиция)
- •Превращенное конверсное суждение
- •Инверсия
- •Умозаключение посредством обратного отношения
- •§ 4. Традиционный квадрат противопоставлений
- •§ 5. Противопоставление различных видов суждений
- •Контрадикторное противопоставление сложных суждений
- •Контрарное противопоставление
- •Субконтрарное противопоставление
- •Суперимпликация
- •Отношение субъимпликации, или конверсного подчиненного суждения
- •Глава IV. Категорический силлогизм § 1. Определение категорического силлогизма
- •§ 2. Энтимема
- •§ 3. Правила, или аксиомы, обоснованности
- •Аксиомы количества
- •Аксиомы качества
- •§ 4. Общие теоремы силлогизма
- •§ 5. Фигуры и модусы силлогизма
- •§ 6. Специальные теоремы и правильные модусы первой фигуры
- •§ 7. Специальные теоремы и правильные модусы второй фигуры
- •§ 8. Специальные теоремы и правильные модусы третьей фигуры
- •§ 9. Специальные теоремы и правильные модусы для четвертой фигуры
- •§ 10. Сведение силлогизмов
- •Опосредованное сведение
- •§ 11. Антилогизм, или несовместимая триада
- •Структура антилогизма
- •§ 12. Сорит
- •Глава V. Условные, разделительные и строго разделительные силлогизмы § 1. Условный силлогизм
- •§ 2. Разделительный силлогизм
- •§ 3. Строго разделительный силлогизм
- •§ 4. Сведение смешанных силлогизмов
- •§ 5. Чистый условный и разделительный силлогизмы
- •§ 6. Дилемма
- •Как не попасть на «рога» дилеммы
- •Как взять дилемму за «рога»
- •Опровержение дилеммы
- •Глава VI. Обобщенная, или математическая, логика § 1. Логика как наука о типах порядка
- •§ 2. Формальные свойства отношений
- •Симметрия
- •Транзитивность
- •Соотношение
- •Связность
- •§ 3. Логические свойства отношений в умозаключениях
- •§ 4. Символы: их функция и ценность
- •Лингвистические изменения
- •Ценность специальных символов
- •§ 5. Исчисление классов
- •Операции и отношения
- •§ 6. Исчисление суждений
- •Глава VII. Природа логической, или математической, системы § 1. Функция аксиом
- •§ 2. Чистая математика. Иллюстрация
- •§ 3. Структурная тождественность, или изоморфизм
- •§ 4. Эквивалентность наборов аксиом
- •§ 5. Независимость и непротиворечивость аксиом
- •§ 6. Математическая индукция
- •§ 7. Роль обобщения в математике
- •Глава VIII. Вероятностный вывод § 1. Природа вероятностного вывода
- •§ 2. Математика, или исчисление, вероятности
- •Вероятность совместного появления событий
- •Вероятность одного из взаимоисключающих событий
- •§ 3. Интерпретация вероятности
- •Вероятность как мера верования
- •Вероятность как относительная частота
- •Вероятность как частота истинности типов аргументов
- •Глава IX. Некоторые проблемы логики § 1. Парадокс умозаключения
- •§ 2. Представляет ли силлогизм petitio principii? [51]
- •§ 3. Законы мышления
- •Критика трех «законов»
- •§ 4. Базис логических принципов в природе вещей
- •Книга II. Прикладная логика и научный метод Глава X. Логика и метод науки
- •Метод упорства
- •Метод авторитета
- •Метод интуиции
- •Метод науки, или критического исследования
- •Глава XI. Гипотезы и научный метод
- •§ 1. Причины и функции исследования
- •§ 2. Формулировка релевантной гипотезы
- •§ 3. Дедуктивное развитие гипотез
- •§ 4. Формальные условия для гипотез
- •§ 5. Факты, гипотезы и решающие эксперименты Наблюдение
- •Решающие эксперименты
- •§ 6. Роль аналогии в формировании гипотез
- •Глава XII. Классификация и определение § 1. Значимость классификации
- •§ 2. Цель и природа определения
- •Определение по объему
- •Психологические мотивы для определений
- •Логическая цель определений
- •§ 3. Предикабилии
- •Определение
- •Видовое отличие
- •Привходящее
- •§ 4. Правила для определений
- •§ 5. Деление и классификация
- •Глава XIII. Методы экспериментального исследования § 1. Типы неизменных отношений
- •§ 2. Общее рассмотрение экспериментальных методов
- •§ 3. Метод единственного сходства Метод единственного сходства как принцип научного открытия
- •Метод единственного сходства как принцип доказательства
- •Ценность метода единственного сходства
- •§ 4. Метод единственного различия Метод единственного различия как принцип научного открытия
- •Метод единственного различия как принцип доказательства
- •Ценность метода единственного различия
- •§ 5. Соединенный метод единственного сходства и единственного различия
- •§ 6. Метод сопутствующего изменения
- •Принцип сопутствующего изменения как метод открытия
- •Метод сопутствующего изменения как принцип доказательства
- •Ценность метода сопутствующего изменения
- •§ 7. Метод остатков
- •§ 8. Обобщающее изложение ценности экспериментальных методов
- •§ 9. Учение об единообразии природы
- •§ 10. Множественность причин
- •Глава XIV. Вероятность и индукция § 1. Что такое индуктивное рассуждение?
- •§ 2. Роль подходящих образцов в индукции
- •§ 3. Механизм отбора подходящих образцов
- •§ 4. Рассуждение по аналогии
- •Глава XV. Измерение § 1. Цель измерения
- •§ 2. Природа счета
- •§ 3. Измерение интенсивных качеств
- •§ 4. Измерение экстенсивных качеств
- •§ 5. Формальные условия измерения
- •§ 6. Количественные законы и производное измерение
- •Глава XVI. Статистические методы § 1. Потребность в статистических методах
- •§ 2. Статистическое среднее
- •Среднее арифметическое
- •Среднее взвешенное
- •Медиана
- •§ 3. Виды измерения дисперсии
- •Среднее отклонение
- •Стандартное отклонение
- •§ 4. Измерение корреляции
- •§ 5. Опасности и ошибки при использовании статистических методов
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях § 1. Используется ли научный метод в истории?
- •§ 2. Аутентичность исторических данных
- •§ 3. Установление значения исторических данных
- •§ 4. Установление доказательной ценности исторических свидетельств
- •§ 5. Систематические теории, или объяснения, в истории
- •§ 6. Компаративный метод
- •§ 7. Взвешивание оснований в суде
- •Глава XVIII. Логика и критическая оценка § 1. Находятся ли оценки за пределами логики?
- •§ 2. Моральные суждения в истории
- •§ 3. Логика критических суждений об искусстве
- •§ 4. Логика моральных и практических суждений
- •Экзистенциальный элемент в моральной оценке.
- •Функция логической формы при критической оценке
- •§ 5. Логика вымысла
- •Глава XIX. Ошибки § 1. Логические ошибки
- •A. Формальные ошибки
- •B. Полулогические, или вербальные, ошибки
- •С. Материальные ошибки
- •§ 2. Софистические опровержения
- •§ 3. Злоупотребления научным методом
- •Ошибки редукции
- •Ошибка упрощения, или псевдо-упрощенность
- •Генетическая ошибка
- •Глава XX. Заключение § 1. Что такое научный метод?
- •Факты и научный метод
- •Гипотезы и научный метод
- •Основания и научный метод
- •Система в идеале науки
- •Самокорректирующая природа научного метода
- •Абстрактная природа научных теорий
- •Типы научных теорий
- •§ 2. Пределы и ценность научного метода
- •Приложение [120] Примеры доказательства § 1. Что устанавливает доказательство?
- •§ 2. Некоторые ошибочные доказательства
- •Упражнения Глава I. Предмет логики
- •Глава II. Анализ суждений
- •Глава III. Отношения между суждениями
- •Глава IV. Категорический силлогизм
- •26. Докажите специальные правила приведенных соритов:
- •Глава V. Условные, разделительные и строго разделительные силлогизмы
- •Глава VI. Обобщенная или математическая логика
- •Глава VII. Природа логической или математической системы
- •11. Докажите с помощью математической индукции:
- •Глава VIII. Вероятностный вывод
- •Глава IX. Некоторые проблемы логики
- •Глава X. Логика и метод науки
- •Глава XI. Гипотезы и научный метод
- •Глава XII. Классификация и определение
- •Глава XIII. Методы экспериментального исследования
- •Глава XIV. Вероятность и индукция
- •Глава XV. Измерение
- •2. Если изменять давление, температуру и объем для «идеальных» газов, то нижеприведенное отношение будет сохраняться:
- •Глава XVI. Статистические методы
- •6. Ниже приведены данные о смертности от туберкулеза в Ричмонде, штат Виргиния, и в городе Нью-Йорке за 1910 год:
- •Глава XVII. Вероятностный вывод в истории и смежных исследованиях
- •2. «Французские буквы, подобно еврейскому число‑изображению, по которому первыми десятью буквами означаются единицы, а прочими десятки, имеют следующее значение:
- •Глава XVIII. Логика и критическая оценка
- •Глава XIX. Ошибки
- •Глава XX. Заключение
- •Указатель
- •Книги издательства «Социум»
- •Примечания
§ 2. Природа счета
Какими же способами привносится точность в наши утверждения? Во многих исследованиях пересчет индивидов, обладающих определенным свойством, является единственным возможным методом избежать неясных идей. Действительно ли в Нью-Йорке больше детей не старше десяти лет, чем в Лондоне? Правда ли, что в 1900 г. в Соединенных Штатах было больше промышленных предприятий со штатом менее десяти человек, чем в 1920-м? «Общие впечатления» по таким вопросам слишком неясны, чтобы считаться надежными. Рискованно было бы развивать согласованную социальную теорию (т. е., например, утверждать, что прогрессирующей индустриализации страны сопутствует элиминация малых промышленных предприятий), если бы умозрительные построения нашей теории основывались только на неясных впечатлениях и не были бы доступны эмпирической проверке. На вопросы, подобные перечисленным, можно дать недвусмысленный ответ, только проведя непосредственный пересчет индивидов, относящихся к соответствующим классам.
Пересчет осуществляется не просто так, а потому что мы предполагаем наличие значимых связей между перечисляемыми группами. Поэтому мы не проводим численной описи всех групп индивидов, какие только можем отыскать. Перечисление осуществляется на основании гипотез, выражающих то, как мы понимаем релевантность. Такие гипотезы играют контролирующую роль на каждом этапе исследования. Более того, становится ясным и то, что сравнение групп путем пересчета их членов осуществимо только в том случае, если сами группы недвусмысленным образом отличаются друг от друга. Таким образом, мы прибегаем к пересчету для того, чтобы сделать наши идеи точными. Последнее же возможно только после того, как мы обретем достаточное знание о предмете исследования, чтобы быть в состоянии различать в нем те или иные качества.
Метод пересчета имеет свои ограничения, которые заключаются в том, что исчислимыми могут быть только дискретные группы или же предметные области, которым можно придать форму дискретной группы. Мы можем пересчитать жителей города, потому что каждый из них отличается от каждого другого. Мы не можем пересчитать капли в стакане воды до тех пор, пока мы не найдем способ отделить капли друг от друга и пока не введем конвенцию о том, что мы будем считать каплей.
Большое значение пересчета как метода прояснения наших идей происходит из того факта, что число индивидов в группе само по себе представляет неизменное свойство этой группы. Предположим, мы хотим пересчитать яблоки, находящиеся в сумке. Мы достаем их одно за другим и соотносим каждое яблоко с отдельным членом из набора стандартных объектов (наши пальцы, числа, буквы алфавита). Допустим, что первое яблоко соотнесено с буквой А, второе – с буквой Б, третье – с С и оставшееся яблоко – с D. Таким образом, число полученной в результате пересчета совокупности яблок является постоянным свойством этой совокупности; оно не зависит от того, кто осуществляет пересчет, или от порядка, в котором пересчитываются объекты. Прикладная арифметика отчасти является совокупностью правил, с помощью которых наиболее простым образом может быть установлено данное неизменное правило.
Многие сложности, сопутствующие перечислению групп, происходят из сложности интерпретации того, что именно пересчитывается. Во многих исследованиях пересчет осуществляется легко и недвусмысленно, поскольку перечисляемые группы изначально различимы. Мы можем пересчитать число мужчин и женщин в некоторой общине, поскольку различные биологические функции мужчин и женщин не позволяют их перепутать. Однако там, где граница разделения не столь различима, интерпретация полученных чисел является сомнительной. Так, совсем нелегко провести линию разделения между опытными и неопытными работниками; и хотя мы можем пересчитать число индивидов в каждой из двух этих групп, на результат пересчета также будет распространяться двусмысленность, связанная с понятием опытного работника.
Сбор и интерпретация информации о большом количестве социальных факторов обременены отдельными сложностями. Подобную информацию, как правило, получают из письменных или устных опросов, предложенных лишь части населения; при этом никогда не следует забывать, что точность подобной информации не может превышать точности, с которой респонденты отвечают на вопросы. Всегда следует учитывать неосведомленность, нечестность и праздность, которые могут быть свойственны респондентам. Ни одна математическая операция, проводимая над результатами опросов, не может элиминировать недоступные для пересчета неточности в ответах. Так, перепись населения 1890 года в Соединенных Штатах предусматривала учет цвета кожи респондентов: черные, мулаты, квартероны (черные на четверть), октороны (черные на одну восьмую). Поскольку большинство людей не осведомлено о значении этих различий и еще большее их число не знает, к какой классификации себя отнести, вполне можно утверждать, что ответы будут ненадежными, даже если респонденты отвечали честно. Вопросы, задаваемые в переписи, следует выстраивать крайне аккуратно: они не должны относиться к темам, о которых большинство людей плохо информировано. Полученная из вопросников информация о том, сколько дней в году респондент был трудоустроен или как именно тратил свои деньги в течение года, в большинстве случаев оказывается негодной. То же самое относится и к распространяющейся практике опросов среди не имеющих достаточной квалификации студентов по проблемам половых отношений, экономики или политики.
Праздность или нечестность, которые могут быть присущи респондентам, зачастую являются столь же важными факторами, как и неосведомленность. В одном британском опросе спрашивалось, является ли респондент работником или работодателем. Результат указал на очень большое число работодателей, которое существенно расходилось с информацией, полученной из других независимых источников. Данное расхождение было объяснено, по крайней мере предположительно, тем, что респондентам было стыдно признаться перед опрашивающим в том, что они были всего лишь работниками. Большинство результатов опросов по таким темам, как религия, общественные убеждения, наличие физических или психических расстройств, с точностью будут ненадежными, поскольку, отвечая на такие вопросы, респонденты будут скорее всего испытывать чувство страха или стыда.
Если исследуемые нами группы являются очень большими и их сложно проанализировать исчерпывающим образом, то может случиться так, что перечисление всех их членов окажется невозможным или неоправданным в финансовом смысле. В таких случаях мы прибегаем к отбору подходящих образцов. Ниже у нас еще будет возможность рассмотреть и ограничения, связанные с этой процедурой. Отличительная особенность данного процесса состоит в заключении о том, что соотношение свойств в отдельно взятом примере такое же, как и во всей исследуемой совокупности. Этот процесс подразумевает наличие аргумента, который мы обозначили как «рассуждение от подходящих образцов», или «статистическое умозаключение».
