Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilet (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
900.5 Кб
Скачать
  • Рис. 10-16. Катаболизм пиримидиновых оснований. 1 - дигидропиримидиндегидрогеназа; 2 - дигидропиримидинциклогидролаза; 3 - уреидопропионаза.

    Оротацидурия. Это единственное нарушение синтеза пиримидинов de novo. Оно вызвано снижением активности УМФ-синтазы. Поскольку в эмбриогенезе от образования пиримидинов de novo зависит обеспечение синтеза ДНК субстратами, то жизнь плода невозможна при полном отсутствии активности этого фермента. Действительно, у всех пациентов с оротацидурией отмечают заметную, хотя и очень низкую активность УМФ-синтазы. Снижение синтеза пиримидиновых нуклеотидов, из-за чего возникает гиперпродукция оротата.

    Недостаточность синтеза пиримидиновых нуклеотидов сказывается на интеллектуальном развитии, двигательной способности и сопровождается нарушениями работы сердца и ЖКТ. Нарушается формирование иммунной системы, и наблюдается повышенная чувствительность к различным инфекциям. Гиперэкскреция оротовои кислоты сопровождается нарушениями со стороны мочевыводящей системы и образованием камней. При отсутствии лечения больные обычно погибают в первые годы жизни.

    Нарушения катаболизма пиримидинов. Известны нарушения в работе 2 ферментов этого метаболического пути.

    При недостаточности пиримидин-5'-нуклеотидазы нарушаются отщепление неорганического фосфата от пиримидиновых мононуклеотидов и образование нуклеозидов. Неактивная изоформа пиримидин-5'-нуклеотидазы обнаружена в эритроцитах. В результате наблюдается накопление гиримидиновых НТФ, которые ингибируют пентозофосфатный путь превращения глюкозы и тем самым создают предпосылки к гемолизу эритроцитов.

    Дигидропиримидиндегидрогеназа - скорость-лимитирующий фермент катаболизма пиримидинов. Нарушение работы этого фермента сопровождается отклонениями в функционировании нервной системы и диагностируется на основании повышения уровня свободных пиримидинов: урацила и тимина в плазме крови.

      1. Повышение содержания глюкозы в крови (гипергликемия) наблюдается после приёма пищи, при эмоциональном стрессе, у больных сахарным диабетом, гипертиреозом, болезнью Иценко-Кушинга.  (Ответ не полный!)

    Билет № 26

    1. Пептидные цепи содержат десятки, сотни и тысячи аминокислотных остатков, соединённых прочными пептидными связями. За счёт внутримолекулярных взаимодействий белки образуют определённую пространственную структуру, называемую "конформация белков". Линейная последовательность аминокислот в белке содержит информацию о построении трёхмерной пространственной структуры. Различают 4 уровня структурной организации белков, называемых первичной, вторичной, третичной и четвертичной структурами.

    Первичная структура. Аминокислотные остатки в пептидной цепи белков чередуются не случайным образом, а расположены в определённом порядке. Линейную последовательность аминокислотных остатков в полипептидной цепи называют "первичная структура белка".

    Первичная структура каждого индивидуального белка закодирована в участке ДНК, называемом геном. В процессе синтеза белка информация, находящаяся в гене, сначала переписывается на мРНК, а затем, используя мРНК в качестве матрицы, на рибосоме происходит сборка первичной структуры белка. В организме человека насчитывают около 50 000 индивидуальных белков. Видовая и индивидуальная специфичность набора белков в данном организме определяет особенности его строения и функционирования. Набор белков в дифференцирующихся клетках одного организма определяет морфологические и функциональные особенности каждого типа клеток. Одни и те же АК присутствуют в различных по структуре и функциям белках. Индивидуальность белковых молекул определяется порядком чередования АК в белке. Однако многие белки, выполняя одну и ту же функцию, несколько отличаются по строению у разных представителей одного и того же вида. Примером могут служить белки групп крови у человека. Такое разнообразие белков обусловливает индивидуальную специфичность организмов.

    Первичная структура белков, т.е. последовательность АК в нем, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению аминокислотного состава и, следовательно, структуры синтезируемого белка. Если изменение последовательности а АК носит не летальный характер, а приспособительный или хотя бы нейтральный, то новый белок может передаться по наследству и остаться в популяции. В результате возникают новые белки с похожими функциями. Такое явление называется полиморфизм белков.

    2. Активация жирных кислотПеред тем, как вступить в различные реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической связью с коферментом А:

    β-Окисление - специфический путь катаболизма жирных кислот, при котором от карбоксильного конца жирной кислоты последовательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисления жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.

    β-Окисление

    Количество молекул АТФ

    7 NADH (от пальмитоил-КоА до ацетил-КоА), окисление каждой молекулы кофермента в ЦПЭ обеспечивает синтез 3 молекул АТФ

    21

    7 FADHa, окисление каждой молекулы кофермента в ЦПЭ обеспечивает синтез 2 молекул АТФ

    14

    Окисление каждой из 8 молекул ацетил-КоА в ЦТК обеспечивает синтез 12 молекул АТФ

    96

    Суммарное количество молекул АТФ, синтезированных при окислении одной молекулы пальмитоил-КоА

    131

    Оксалоацетат COOH-CO-CH2-COOH

    Билет № 27

    1. Классы ферментов: 1. Оксидоредуктазы

    Катализируют различные окислительно-восстановительные реакции с участием 2 субстратов (перенос е- или атомов водорода с одного субстрата на другой).

    • Дегидрогеназы. В этот подкласс входят ферменты, катализирующие реакции дегидрирования (отщепления водорода). В качестве акцепторов электронов используются коферменты NAD+, NADP+, FAD, FMN. Все ферменты этой группы обладают высокой субстратной специфичностью. Пример реакции:

    • Оксидазы. Акцептором электрона служит молекулярный кислород. Пример реакции, катализируемой цитохромоксидазой:

    • Оксигеназы (гидроксилазы) - атом кислорода из молекулы кислорода присоединяется к субстрату. Пример реакции:

    2.Трансферазы

    Катализируют перенос функциональных групп от одного соединения к другому. Подразделяют в зависимости от переносимой группы. К классу трансфераз относят аминотрансферазы, ацилтрансферазы, метилтранс-феразы, гликозилтрансферазы, киназы (фосфо-трансферазы).

    3.Гидролазы

    Катализируют реакции гидролиза (расщепления ковалентной связи с присоединением молекулы воды по месту разрыва). Подразделяют в зависимости от расщепляемой связи.

    Наименование ферментов составляют по формуле "субстрат-гидролаза" или прямым присоединением к названию субстрата суффикса "аза", например протеаза, липаза, фосфолипаза, рибонуклеаза.

    Для отдельных классов гидролаз применимы специальные термины, характеризующие гидролиз определённой химической связи: эстеразы, фосфатазы и др.

    4. Лиазы

    К лиазам относят ферменты, отщепляющие от субстратов негидролитическим путём определённую группу (при этом могут отщепляться СО2, Н2О, NH2,SН2и др.) или присоединяющие чаще всего молекулу воды по двойной связи.

    Наименование ферментов составляют по формуле "субстрат-отщепляемая или присоединяемая группировка".

    5. Изомеразы

    Катализируют различные внутримолекулярные превращения. Подразделяют в зависимости от типа реакции изомеризации.

    Изомеразы могут катализировать внутримолекулярные окислительно-восстановительные реакции, осуществляя взаимопревращения альдоз и кетоз, кетонных и енольных групп, перемещения двойных связей внутри молекулы.

    Когда изомеризация состоит во внутримолекулярном переносе группы, фермент называют "мутазой"

    6. Лигазы (синтетазы)

    Катализируют реакции присоединения друг к другу двух молекул с образованием ковалент-ной связи. Этот процесс сопряжён с разрывом фосфоэфирной связи в молекуле АТФ (или других нуклеозидтрифосфатов) или с разрывом макроэргических связей других соединений. В первом случае (при использовании энергии гидролиза АТФ) такие ферменты называют лигазами, или синтетазами.

    В случае, когда источником энергии служит любое другое макроэргическое соединение (не АТФ), ферменты называют синтазами.

    1. Фенилаланин - незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин - условно заменимая аминокислота, поскольку образуется из фенилаланина. Содержание этих аминокислот в пищевых белках (в том числе и растительных) достаточно велико. Фенилаланин и тирозин используются для синтеза многих биологически активных соединений. В разных тканях метаболизм этих аминокислот происходит по-разному.

    Известно несколько наследственных заболеваний, связанных с дефектом ферментов обмена фенилаланина и тирозина в разных тканях. Фенилкетонурия

    В печени здоровых людей небольшая часть фенилаланина (∼10%) превращается в фенил-лактат и фенилацетилглутамин

    Классическая ФКУ - наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. Наиболее тяжёлые проявления ФКУ - нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. При отсутствии лечения больные не доживают до 30 лет. Вариантная ФКУ (коферментзависимая гиперфенилаланинемия) - следствие мутаций в генах, контролирующих метаболизм Н4БП.

    Тирозинемии. Некоторые нарушения катаболизма тирозина в печени приводят к тирозинемии и тирози-нурии. Различают 3 типа тирозинемии: Тирозинемия типа 1 (тирозиноз), Тирозинемия типа II (синдром Рихнера-Ханхорта), Тирозинемия новорождённых (кратковременная).

    Алкаптонурия ("чёрная моча") Причина заболевания - дефект диоксигеназы гомогентизиновой кислоты, для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь кислородом воздуха, образует тёмные пигменты алкаптоны. Заболевание наследуется по аутосомнорецессивному типу. Диагностических методов выявления гетерозиготных носителей дефектного гена к настоящему времени не найдено.

    Альбинизм- отсутствие пигментации кожи и волос. Причина метаболического нарушения - врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.

    Болезнь Паркинсона. Заболевание развивается при недостаточности дофамина в чёрной субстанции мозга. Это одно из самых распространённых неврологических заболеваний (частота 1:200 среди людей старше 60 лет). При этой патологии снижена активность тирозингидроксилазы, ДОФА-декарбоксилазы. Заболевание сопровождается тремя основными симптомами: акинезия (скованность движений), ригидность (напряжение мышц), тремор (непроизвольное дрожание). Дофамин не проникает через гематоэнцефалический барьер и как лекарственный препарат не используется. Депрессивные состояния часто связаны со снижением в нервных клетках содержания дофамина и норадреналина. Гиперсекреция дофамина в височной доле мозга наблюдается при шизофрении.

    1. ?Избыточное накопление в митохондриях ацил-коэнзима А ведет к угнетению скорости фермент-зависимых процессов окислительного метаболизма в различных тканях организма

    Билет № 28

    1. По химическому строению различают простые ферменты (состоят только из АК) и сложные ферменты (имеют небелковую часть или простетическую группу). Белковая часть носит название – апофермент, а небелковая, если она связана ковалентно с апоферментом, то называется кофермент, а если связь нековалентная (ионная, водородная) – кофактор. Функции простетической группы следующие: участие в акте катализа, осуществление контакта между ферментом и субстратом, стабилизация молекулы фермента в пространстве. В роли кофактора обычно выступают неорганические вещества  - ионы цинка, меди, калия, магния, кальция, железа, молибдена.

    Коферменты можно рассматривать как составную часть молекулы фермента. Коферментная функция витамина В1- тиаминпирофосфат (ТПФ)- декарбоксилирование а-кетокислот; перенос активного альдегида (транскетолаза) В2- ФАД и ФМН- дыхание, перенос водород

    Пантотеновая кислота (В5)- коэнзим А- транспорт ацильных групп

    РР В3- НАД, НАДФ- дыхание, перенос водорода

    В6- пиридоксальфосфат (ПФ)- трансаминирование и декарбоксилирование аминокислот.

    1. Билирубин - желчный пигмент, находящийся в растворимой форме в желчи (в норме) или в нерастворимой форме в желчных камнях (при желчнокаменной болезни). Билирубин образуется в результате нормального или патологического эритроцитов. Билирубин повышается при желтухах (гепатит, гемолитическая анемия, нарушения оттока желчи - холедохолитиаз).

    Желтухи. Причинами гипербилирубинемии могут быть увеличение образования билирубина, превышающее способность печени экскретировать его, или повреждение печени, приводящее к нарушению секреции билирубина в жёлчь в нормальных количествах. Гипербилирубинемию отмечают также при закупорке желчевыводящих протоков печени.

    Во всех случаях содержание билирубина в крови повышается. При достижении определённой концентрации он диффундирует в ткани, окрашивая их в жёлтый цвет. Пожелтение тканей из-за отложения в них билирубина называют желтухой. Клинически желтуха может не проявляться до тех пор, пока концентрация билирубина в плазме крови не превысит верхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л.

    1. Гемолитическая (надпечёночная) желтуха. Известно, что способность печени образовывать глюкурониды и выделять их в жёлчь в 3-4 раза превышает их образование в физиологических условиях. Гемолитическая (надпечёночная) желтуха - результат интенсивного гемолиза эритроцитов. Она обусловлена чрезмерным образованием билирубина, превышающим способность печени к его выведению. Гемолитическая желтуха развивается при исчерпании резервных возможностей печени. Основная причина надпечёночной желтухи - наследственные или приобретённые гемолитические анемии.

    2. Печёночно-клеточная (печёночная) желтуха. Печёночно-клеточная (печёночная) желтуха обусловлена повреждением гепатоцитов и жёлчных капилляров, например, при острых вирусных инфекциях, хроническом и токсических гепатитах. Причина повышения концентрации билирубина в крови - поражение и некроз части печёночных клеток. Происходит задержка билирубина в печени, чему способствует резкое ослабление метаболических процессов в поражённых гепатоцитах.

    3. Механическая, или обтурационная (подпечёночная) желтуха. При нарушении желчеотделения в двенадцатиперстную кишку. Это может быть вызвано закупоркой жёлчных протоков, например при желчнокаменной болезни, опухолью поджелудочной железы, жёлчного пузыря, печени, двенадцатиперстной кишки, хроническим воспалением поджелудочной железы или послеоперационным сужением общего жёлчного протока.

    При диагностике желтух надо иметь в виду, что на практике редко отмечают желтуху какого-либо одного типа в "чистом" виде. Чаще встречается сочетание того или иного типа. Так, при выраженной гемолитической желтухе, сопровождающейся повышением концентрации непрямого билирубина, неизбежно страдают различные органы, в том числе и печень, что может вносить элементы паренхиматозной желтухи, т.е. повышение в крови и моче прямого билирубина. В свою очередь, паренхиматозная желтуха, как правило, включает в себя элементы механической. При подпечёночной (механической) желтухе, например при раке головки поджелудочной железы, неизбежен повышенный гемолиз как следствие раковой интоксикации и, как следствие, повышение в крови как прямого, так и непрямого билирубина. При дифференциальной диагностике желтух необходимо учитывать содержание уробилиногенов в моче. В норме за сутки из организма выделяется в составе мочи около 4 мг уробилиногенов. Если с мочой выделяется повышенное количество уробилиногенов, то это - свидетельство недостаточности функции печени, например при печёночной или гемолитической желтухе. Присутствие в моче не только уробилиногенов, но и прямого билирубина указывает на поражение печени и нарушение поступления жёлчи в кишечник.

    1. Жиры вместе с углеводами окисляются в мышцах для снабжения энергией работающих мышц. Предел, до которого они могут возместить энергетические затраты, зависит от длительности и интенсивности нагрузки. Окисление одной молекулы глюкозы (6 атомов углерода) приводит к образованию 38 молекул АТФ, в то время как окисление молекул жирной кислоты с 18 атомами углерода (стеариновая кислота) дает 147 молекулы АТФ (выход АТФ от одной молекулы жирной кислоты выше в 3,9 раза).

    Билет № 29

      1. Витамин b1 (тиамин). Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.

    • Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В1, содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

    • Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.

    • Биологическая роль витамина В, определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и а-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбоксилировании пирувата и а-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов. Дефицит тиамина приводит к нарушению углеводного обмена. В результате в головной мозг поступает недостаточное количество глюкозы. Стремясь самостоятельно восполнить ее запас, нервные клетки увеличиваются в попытке «дотянуться» до кровеносных сосудов, из которых они могут насытиться. Все это естественным образом приводит к тому, что увеличенные нервные клетки усваивают глюкозу на 60% меньше. Кроме того картина усугубляется тем, что истощается защитный слой клеток мозга. Вследствие чего возникает ощущение «оголенных нервов», что является причиной состояния нервозности и раздражительности.

    • Основной, наиболее характерный и специфический признак недостаточности витамина В1- полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем - потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания - нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В1относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.

    1. Транскрипция - первая стадия реализации генетической информации в клетке. В ходе процесса образуются молекулы мРНК, служащие матрицей для синтеза белков, а также транспортные, рибосомальные и другие виды молекул РНК, выполняющие структурные, адапторные и каталитические функции

    Транскрипция у эукариотов происходит в ядре. В основе механизма транскрипции лежит тот же структурный .принцип комплементарного спаривания оснований в молекуле РНК (G ≡ C, A=U и Т=А). ДНК служит только матрицей и в ходе транскрипции не изменяется. Синтез молекул РНК начинается в определённых последовательностях (сайтах) ДНК, которые называют промоторы, и завершается в терминирующих участках (сайты терминации).

    Синтез цепи РНК идёт от 5'- к З'-концу, при этом матричная цепь ДНК всегда антипараллельна синтезируемой нуклеиновой кислоте. Биосинтез РНК осуществляется ДНК-зависимыми РНК-полимеразами. В ядрах эукариотов обнаружены 3 специализированные РНК-полимеразы: РНК-полимераза I, синтезирующая пре-рРНК; РНК-полимераза II, ответственная за синтез пре-мРНК; РНК-полимераза III,синтезирующая пре-тРНК.

    Инициация. Активация промотора происходит с помощью большого белка - ТАТА-фактора, называемого так потому, что он взаимодействует со специфической последовательностью нуклеотидов промотора - ТАТААА- (ТАТА-бокс) (рис. 4-29).

    Присоединение ТАТА-фактора облегчает взаимодействие промотора с РНК-полимеразой. Факторы инициации вызывают изменение кон-формации РНК-полимеразы и обеспечивают раскручивание примерно одного витка спирали ДНК, т.е. образуется транскрипционная вилка, в которой матрица доступна для инициации синтеза цепи РНК.

    Элонгация. Факторы элонгации повышают активность РНК-полимеразы и облегчают расхождение цепей ДНК. Синтез молекулы РНК идёт от 5'- к З'-концу комплементарно матричной цепи ДНК. На стадии элонгации, в области транскрипционной вилки, одновременно разделены примерно 18 нуклеотидных пар ДНК. Растущий конец цепи РНК образует временную гибридную спираль, около 12 пар нуклеотидных остатков, с матричной цепью ДНК. По мере продвижения РНК-полимеразы по матрице в направлении от 3'- к 5'-концу впереди неё происходит расхождение, а позади - восстановление двойной спирали ДНК.

    Терминация. Раскручивание двойной спирали ДНК в области сайта терминации делает его доступным для фактора терминации. Завершается синтез РНК в строго определенных участках матрицы - терминаторах (сайты терминации). Фактор терминации облегчает отделение первичного транскрипта (пре-мРНК), комплементарного матрице, и РНК-полимеразы от матрицы. РНК-полимераза может вступить в следующий цикл транскрипции после присоединения субъединицы σ.

    1. Жиры - наиболее выгодная и основная форма депонирования энергии. Запасы гликогена в организме не превышают 300 г и обеспечивают организм энергией не более суток. Депонированный жир может обеспечивать организм энергией при голодании в течение длительного времени (до 7-8 нед). Синтез жиров активируется в абсорбтивный период и происходит в основном в жировой ткани и печени. Но если жировая ткань - место депонирования жира, то печень выполняет важную роль превращения части углеводов, поступающих с пищей, в жиры, которые затем секретируются в кровь в составе ЛПОНП и доставляются в другие ткани (в первую очередь, в жировую).

    Гликоген депонируется главным образом в печени и скелетных мышцах. После приёма пищи, богатой углеводами, запас гликогена в печени может составлять примерно 5% от её массы. Гликоген > глюкоза-1фосфат > глюкоза-6фосфат > ГЛЮ

    Билет № 30

    1. Витамины-низкомолекулярные органические соединения различной химической природы и различного строения, которые, присутствуя в небольших количествах в пище, обеспечивают нормальное протекание биохимических и физиологических процессов путём участия в регуляции обмена целостного организма.

    Водорастворимые витамины при их избыточном поступлении в организм, будучи хорошо растворимыми в воде, быстро выводятся из организма.

    Жирорастворимые витамины хорошо растворимы в жирах и легко накапливаются в организме при их избыточном поступлении с пищей. Их накопление в организме может вызвать расстройство обиена веществ, называемое гипервитаминозом, и даже гибель организма.

    Таблица 3-2. Водорастворимы® витамины

    Название

    Суточная потребность, мг

    Коферментная форма

    Биологические функции

    Характерные признаки авитаминозов

    В1 (тиамин)

    2-3

    ТДФ

    Декарбоксилирование а-кетокислот, перенос активного альдегида (транскетолаза)

    Полиневрит

    В2 (рибофлавин)

    1,8-2,6

    FAD FMN

    В составе дыхательных ферментов, перенос водорода

    Поражение глаз (кератиты, катаракта)

    B5 (пантотеновая кислота)

    10-12

    KoA-SH

    Транспорт ацильных групп

    Дистрофические изменения в надпочечниках и нервной ткани

    В6 (пиридоксин)

    2-3

    ПФ (пиридоксальфосфат)

    Обмен аминокислот (трансаминирование, декарбоксилирование)

    Повышенная возбудимость нервной системы, дерматиты

    PP (ниацин)

    15-25

    NAD NADP

    Акцепторы и переносчики водорода

    Симметричный дерматит на открытых участках тела, деменция и диарея

    Н (биотин)

    0,01-0,02

    Биотин

    Фиксация СО2, реакции карбоксилирования (например, пирувата и ацетил-КоА)

    Дерматиты, сопровождающиеся усиленной деятельностью сальных желёз

    Вc (фолиевая кислота)

    0,05-0,4

    Тетрагидро-фолиевая кислота

    Транспорт одноуглеродных групп

    Нарушения кроветворения (анемия, лейкопении)

    В12 (кобаламин)

    0,001-0,002

    Дезоксиаденозил-и метилкобаламин

    Транспорт метальных групп

    Макроцитарная анемия

    С (аскорбиновая кислота)

    50-75

     

    Гидроксилирование пролина, лизина (синтез коллагена), антиоксидант

    Кровоточивость дёсен, расшатывание зубов, подкожные кровоизлияния, отёки

    Р (рутин)

    Не установлена

     

    Вместе с витамином С участвует в окислительно-восстановительных процессах, тормозит действие гиалуронидазы

    Кровоточивость дёсен и точечные кровоизлияния

    Таблица 3-3. Жирорастворимые витамины

    Название

    Суточная потребность, мг

    Биологические функции

    Характерные признаки авитаминозов

    А (ретинол)

    1-2,5

    Участвует в акте зрения, регулирует рост и дифференцировку клеток

    Гемералопия (куриная слепота), ксерофтальмия, кератомаляция, кератоз эпителиальных клеток

    D (кальциферол)

    0,012-0,025

    Регуляция обмена фосфора и кальция в организме

    Рахит

    Е (токоферол)

    5

    Антиоксидант; регулирует интенсивность свободнорадикальных реакций в клетке

    Недостаточно изучены; известно положительное влияние на развитие беременности и при лечении бесплодия

    К (нафтохинон)

    1-2

    Участвует в активации факторов свёртывания крови: II, VII, IX, XI

    Нарушение свёртывающей системы крови

    Авитаминозы – это патологические состояния, связанные с отсутствием определенных витаминов. Если в организм не поступает несколько витаминов, то развивается полиавитаминоз. В настоящее время наблюдаются случаи недостаточного поступления в организм того или иного витамина – гиповитаминоз. Гипо- и авитаминозы могут быть первичными и вторичными. Причиной первичного гипоавитаминоза является недостаточное поступление или полное отсутствие витаминов в пище. Причинами вторичного гипоавитаминоза являются: 1) заболевания ЖКТ, при которых нарушается всасывание витаминов; 2) отсутствие в пище жиров, которые необходимы для всасывания ЖРВ; 3) заболевания печени и желчевыводящих путей, сопровождающиеся недостаточным выделением желчи в кишечник, желчные кислоты необходимы для всасывания ЖРВ; 4) глистная инвазия и другие паразитарные заболевания, т.к. паразиты поглощают витамины или разрушают их; 5) нарушение активации или усвоения абсорбированных витаминов в результате внутренних болезней (печени, почек); 6) энзимопатии, приводящие к метаболической неэффективности витамина; 7) повышенные потери витамина; лечение антибиотиками и сульфаниламидными препаратами в течение длительного времени (больше 10 дней), при этом эти препараты подавляют кишечную микрофлору; 9) применение антивитаминов; 10) относительная недостаточность при повышении потребности в витаминах, например, при беременности, кормлении грудью, тяжелом физическом труде.

    Антивитамины – это вещества, сходные по строению с витаминами и вызывающие снижение активности витаминов. Антивитамины могут взаимодействовать с апоf, образуя неактивные ферментные комплексы. Некоторые антивитамины способны изменять структуру витамина. Провитамины это вещества, из которых в тканях образуются биологически активные формы витаминов.

    Встречаются патологические состояния, связанные с потреблением больших доз витаминов – гипервитаминозы. Чаще гипервитаминозы развиваются при употреблении ЖРВ, так как они не способны выводиться из организма.

    1. Адипоциты (место депонирования жиров) располагаются в основном под кожей, образуя подкожный жировой слой, и в брюшной полости, образуя большой и малый сальники. Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической работе. Гидролиз внутриклеточного жира осуществляется под действием фермента гормончувствительной липазы - ТАГ-липазы. Этот фермент отщепляет одну жирную кислоту у первого углеродного атома глицерола с образованием диацилглицерола, а затем другие липазы гидролизуют его до глицерола и жирных кислот, которые поступают в кровь. Глицерол как водорастворимое вещество транспортируется кровью в свободном виде, а жирные кислоты (гидрофобные молекулы) в комплексе с белком плазмы - альбумином.

    Стеатозом принято называть жировую инфильтрацию печени - это накапливание жира в печеночных клетках. Данное заболевание считается наиболее распространенным среди всех гепатозов.

    Оно возникает из-за реакции печени на токсическое воздействие разного рода. Кроме того, причиной данного процесса становятся некоторые заболевания и всевозможные патологии. Она может развиваться и из-за голодания. Стеатоз в легких случаях протекает без каких-либо болей и может носить кратковременный характер. Тяжелые случаи заболевания протекают крайне болезненно. Масса печени увеличивает порой до пяти килограммов, хотя в норме ее вес достигает 1.5 кг. Особо тяжелые случаи могут привести к отказу печени и дальнейшей смерти. Жировая инфильтрация, в принципе, обратима. Лечение сегодня предусматривает тщательное соблюдение больным всех рекомендаций врача и полнейший отказ от употребления алкоголя.

    Если содержание ТАГ в печени превышает 10%, а гистологически жировые капли выявляются более чем в половине гепатоцитов, то говорят о стеатозе (ожирении) печени (синоним – жировая инфильтрация печени). Причины по убывающей частоте следующие: сахарный диабет, ожирение, гиперлипопротеинемии, злоупотребление алкоголем, отравления, голодание, гиповитаминозы, беременность, наследственные дефекты окисления СЖК

    Все вещества, являющиеся донаторами метильных групп, способствуют секреции ЛПОНП и окислению СЖК, следовательно, являются липотропными. Вещества-акцепторы метилов снижают секрецию ЛПОНП и окисление СЖК, следовательно, являются антилипотропными. Главный липотропный фактор – холин. К липотропам также относятся витамины В12, Вс, В6, карнитин, МЕТ, бетаин, инозит, пангамат. Антилипотропами являются витамин РР, этионин, гуанидинацетат. Клетки выводных протоков поджелудочной железы вырабатывают липокаин — липотропное вещество.

    Лечение и профилактика жирового гепатоза

    Терапия должна быть направлена на устранение причин, на купирование синдромов нарушенного пищеварения и всасывания, на восстановление функции печени и билиарной системы. При этом исключаются прием некоторых препаратов и злоупотребления алкоголем.

    Если этиологический фактор устранен, определено курсовое и симптоматическое лечение, то больному следует рекомендовать оставаться под врачебным наблюдением еще в течение года, а возможно и дольше. Каждые 2 месяца следует оценивать самочувствие и физикальный статус, 1 раз в 3 месяца повторять исследования сывороточных трансаминаз и 1 раз в 6 месяцев проводить УЗИ. Лечение пролонгировать на 1 год и более.

    Во всех случаях следует проводить неотягощающую больного терапию с использованием диетических факторов и лекарств, нормализующих функцию печени и билиарной системы. С этой целью показан длительный прием препарата Гепабене. Этот препарат растительного происхождения содержит силимарин, улучшающий функцию печени, и фумарин, стимулирующий желчеобразование и желчеотделение, а следовательно, улучшающий процессы пищеварения и всасывания микронутриентов нужных и недостающих больному веществ.

    1. Фенилкетонурия. Фенилпировиноградная олигофрения (болезнь Фёллинга). Энзимопатия, наследуемая по аутосомно-рецессивному типу. Ее биохимической сущностью является невозможность превращения фенилаланина в тирозин вследствие отсутствия фермента фенилаланин-оксидазы. Клинические проявления этой аномалии связаны с выраженным повреждением мозга, сопровождающимся умственной отсталостью. Это нередкое заболевание - одна из наиболее частых причин олигофрении. Лечение. При рано начатой терапии, по возможности уже в период новорожденности, можно добиться успеха путем снижения до минимума содержания фенилаланина в диете. Однако применение казеингидролизата, который составляет основу диеты, обеспечивая ограничение фенилаланина, затруднительно и дорого. В настоящее время предложены специальные препараты для лечения фенилкетонурии - берлофен, лофеналак, минафен, гипофенат, - которые удовлетворительно переносятся больными. При лечении, начатом в позднем грудном возрасте, можно добиться только прекращения дальнейшего прогрессирования идиотии. 

    Билет № 31

    1. Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:

    1. Регуляция количества молекул фермента в клетке

    Известно, что белки в клетке постоянно обновляются. Количество молекул фермента в клетке определяется соотношением 2 процессов - синтеза и распада белковой молекулы фермента:

    Синтез и фолдинг белка - многостадийный процесс. Регуляция синтеза белка может происходить на любой стадии формирования белковой молекулы. Наиболее изучен механизм регуляции синтеза белковой молекулы на уровне транскрипции, который осуществляется определёнными метаболитами, гормонами и рядом биологически активных молекул

    Что касается распада ферментов, то регуляция этого процесса менее изучена. Можно только предполагать, что это не просто процесс протеолиза (разрушения белковой молекулы), а сложный механизм, возможно, определяемый на генетическом уровне.

    1. Регуляция скорости ферментативной реакции доступностью молекул субстрата и коферментов

    Важный параметр, контролирующий протекание метаболического пути, - наличие субстратов, и главным образом - наличие первого субстрата. Чем больше концентрация исходного субстрата, тем выше скорость метаболического пути.

    Другой параметр, лимитирующий протекание метаболического пути, - наличие регенерированных коферментов. Например, в реакциях дегидрирования коферментом дегидрогеназ служат окисленные формы NAD+, FAD, FMN, которые восстанавливаются в ходе реакции. Чтобы коферменты вновь участвовали в реакции, необходима их регенерация, т.е. превращение в окисленную форму.

    3. Регуляция каталитической активности ферментов

    Важнейшее значение в изменении скорости метаболических путей играет регуляция каталитической активности одного или нескольких ключевых ферментов данного метаболического пути. Это высокоэффективный и быстрый способ регуляции метаболизма.

    Активаторы – вещества, которые повышают скорость ферментативных реакций, увеличивают активность ферментов. Они бывают органической и неорганической природы. Активаторы органической природы: желчные кислоты (активируют поджелудочную ли пазу), энтерокиназа (активирует трипсиноген), глутатион, цистеин, витамин С (повышают активность оскидоредуктаз). Активаторы неорганической природы: например, HCl активирует пепсиноген, ионы ме таллов (Na, Cl, K, Mg, Mn, Zn) активируют очень многие ферменты. Ионы металлов: а) спо собствуют образованию ферментсубстратного комплекса; б) служат донорами и акцептора ми электронов; в) принимают участие в образовании активного центра ферментов (Zn в со ставе карбангидразы, Fe – в составе цитохромов, каталазы, пероксидазы); г) выступают в ро ли аллостерических регуляторов. 2. Ингибиторы – вещества, которые уменьшают активность ферментов и замедляют хими ческие реакции. Различают обратимое и необратимое ингибирование: Если ингибитор связывается с молекулой фермента слабыми связями (Е+И ↔ ЕИ) то такой ингибитор легко удаляется и активность фермента восстанавливается; Если ингибитор связывается с молекулой фермента прочными ковалентными связями (Е+И→ ЕИ), то наступает необратимое подавление активности фермента Аллостерические ингибиторы и активаторы объединяют общим названием эффекторы. Эффектор - одна из важных особенностей аллостерических ферментов. Возможность изменять скорость реакции, катализируемой ферментом, ингибиторами и активаторами - краеугольный камень принципов регуляции метаболизма. Следующий график показывает пути, по которым эффекторы изменяют кинетический график типичного аллостерического фермента с положительной субстратной кооперативностью.

    1. Нарушения обмена холестерола чаще всего приводят к гиперхолестеролемии и последующему развитию атеросклероза. При атеросклерозе происходит образование на стенках артерий так называемых атеросклеротических бляшек, представляющих собой в основном отложения холестерола. Атеросклеротические бляшки разрушают клетки эндотелия сосудов, и в таких местах часто образуются тромбы. Атеросклероз - полигенное заболевание. Одна из основных причин развития атеросклероза - нарушение баланса между поступлением холестерола с пищей, его синтезом и выведением из организма. Выведение холестерола ограничено, не превышает 1,2-1,5 г/сут, а поступление с пищей при неправильном питании может превысить этот барьер, поэтому с возрастом постепенно происходит накопление холестерола в организме. Важным фактором развития атеросклероза являются генетические дефекты белков и ферментов, участвующих в обмене холестерола.

    Концентрация холестерола в крови взрослых людей составляет 200±50 мг/дл (5,2±1,2 ммоль/л) и, как правило, увеличивается с возрастом. Превышение нормальной концентрации холестерола в крови называют гиперхолестеролемией.

    Гиперхолестеролемия часто развивается вследствие избыточного поступления холестерола с пищей, а также углеводов и жиров. Гиперкалорийное питание - один из распространённых факторов развития гиперхолестеролемии, так как для синтеза холестерола необходимы только ацетил-КоА, АТФ и NADPH. Все эти субстраты образуются при окислении глюкозы и жирных кислот, поэтому избыточное поступление этих компонентов пищи способствует развитию гиперхолестеролемии. В норме поступление холестерола с пищей снижает синтез собственного холестерола в печени, однако с возрастом эффективность регуляции у многих людей снижается.

    Важным лечебным фактором, снижающим риск развития гиперхолестеролемии и атеросклероза, является гипокалорийная и гипохолестериновая диета. Поступление холестерола с пищей не должно превышать 300 мг/сут. Холестерол - стероид животного происхождения, поэтому он поступает в организм при употреблении животных жиров и жирного мяса. Растительная пища не содержит холестерола, поэтому у людей среднего и старшего возраста она должна составлять основу рациона.

    К лечебным и профилактическим факторам относят обогащение пищи полиеновыми жирными кислотами семейства ω-3, уменьшающими риск тромбообразования. Ненасыщенные жирные кислоты способствуют более быстрому выведению холестерола из организма, хотя механизм этого явления до конца не выяснен. В то же время доказано, что полиеновые кислоты подавляют синтез тромбоцитарного фактора роста и таким образом замедляют развитие атеросклеротической бляшки. Витамины С, Е, А, обладающие антиоксидантными свойствами, ингибируют перекисное (свободнорадикальное) окисление липидов в ЛПНП и поддерживают нормальную структуру липидов ЛПНП и их метаболизм.

    Билет № 32

    1. Цикл лимонной кислоты (цитратный цикл, цикл Кребса, цикл трикарбоновых кислот, ЦТК) - заключительный этап катаболизма, в котором углерод ацетильного остатка ацетил-КоА окисляется до 2 молекул СО2. Атомы водорода, освобождающиеся в окислительно-восстановительных реакциях, доставляются в ЦПЭ при участии NAD- и FAD-зависимых дегидрогеназ, в результате чего происходят синтез воды и окислительное фосфорилирование АДФ. Связь между атомами углерода в ацетил-КоА устойчива к окислению. В условиях организма окисление ацетильного остатка происходит в несколько этапов, образующих циклический процесс из 8 реакций:

    Рис. 6-24. Общая схема цитратного цикла. Цифры 1-8 обозначают реакции цитратного цикла. Цикл начинается с того, что ацетильный остаток конденсируется с оксалоацетатом, в результате чего образуется шестиуглеродное соединение - цитрат. На образование цитрата в каждом обороте цикла расходуется одна молекула оксалоацетата; в результате завершения цикла происходит регенерация оксалоацетата. Таким образом, одна молекула оксалоацетата может многократно использоваться для окисления ацетильных остатков. Общая характеристика и энергетическое значение нитратного цикла

    Образованием оксалоацетата завершается один оборот цитратного цикла. В одном обороте цикла лимонной кислоты в 2 реакциях декарбоксилирования (превращение изоцитрата в а-кетоглутарат и ос-кетоглутарата в сукцинил-КоА) происходит образование 2 молекул СО2. В 4 реакциях цитратного цикла происходит дегидрирование с образованием восстановленных коферментов: 3 молекул NADH+H+ и 1 молекулы FADH2. B составе сукцинатдегидрогеназы.Наконец, на один оборот цикла затрачивается 2 молекулы воды: одна - на стадии образования цитрата, вторая - на стадии гидратации фумарата. Восстановленные коферменты (3 молекулы NADH и 1 молекула FADH2), образованные в цикле лимонной кислоты, отдают электроны в ЦПЭ на кислород - конечный акцептор электронов. Восстановленный кислород взаимодействует с протонами с образованием воды.На каждую молекулу NADH при образовании молекулы воды в процессе тканевого дыхания синтезируются 3 молекулы АТФ, а на каждую молекулу FADH2 - 2 молекулы АТФ (рис. 6-25). Таким образом, каждый оборот цикла лимонной кислоты сопровождается синтезом 11 молекул АТФ путём окислительного фосфорилирования. Одна молекула АТФ образуется путём субстратного фосфорилирования. В итоге на каждый ацетильный остаток, включённый в цитратный цикл, образуется 12 молекул АТФ.

    1. Матричные РНК. Матричная РНК составляет 2-3% от всей клеточной РНК, синтезируется мРНК в ядре клетки на матрице ДНК (процесс транскрипции), переписывая с нее генетическую информацию по принципу комплементарности.

      Затем мРНК поступают в цитоплазму, соединяются с рибосомой и выполняют роль матрицы для биосинтеза белка. Каждой аминокислоте соответствует в мРНК определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. Последовательность кодонов в цепи мРНК определяет последовательность аминокислот в белке. Всего может быть 64 кодона. Из них 61 кодон кодирует аминокислоты, а 3 кодона – кодоны терминаторы (терминирующие), которые обозначают окончание белкового синтеза. Существуют также инициирующие кодоны, которые соответствуют первой аминокислоте в белке и чаще всего соответствуют аминокислоте метионину.

    Поскольку мРНК несет наследственную информацию о первичной структуре белка, нередко ее называют информационной РНК (иРНК). Каждый отдельный белок, синтезируемый в клетке, кодируется определенной «своей» мРНК или ее участком. мРНК образует несколько двуспиральных «шпилек», на концах которых располагаются знаки (например, ААУААА) инициации (начала синтеза белка) и терминации (окончания синтеза белка).

    Т.о. информация о строении белка закодирована в ДНК с помощью генетического кода, который является линейным, непрерывным, триплетным, выражденным. Он является универсальным.

    Молекулярный вес мРНК варьирует в широких пределах от 35 000 до нескольких млн. мРНК ранее считались короткоживущими РНК. Для микроорганизмов время жизни мРНК несколько секунд или минут. Но для эукариот – оно может составлять от нескольких часов до нескольких недель.

    Транспортная РНК. Составляют 10-20% клеточной РНК.

    Функции тРНК:

    1 - связывают аминокислоты и транспортируют их в рибосому, где происходит синтез белка;

    2 – кодируют аминокислоты;

    3 – Расшифровывают генетический код.

    Адапторная функция тРНК: Между аминокислотами и нуклеотидами (или триплетами нуклеотидов) невозможны специфические, комплементарные взаимодействия по типу образования нуклеотидных пар А»»»Т (или A*«»U) и G»»»C. Поэтому было сделано предположение о существовании молекул-адапторов, каждая из которых может взаимодействовать с определенным кодоном — с одной стороны, и с определенной аминокислотой — с другой стороны.

    1. У взрослого человека в состоянии азотистого равновесия выделение 500 ммоль мочевины (или 14 г азота мочевины) за сутки соответствует употреблению примерно 100 г белка. Выделяемая с мочой мочевина составляет около 90 % выводимых из организма азотистых метаболитов (продуктов распада белка). А значит студент в сутки потребляет 49,3 г белка, а это мало.

  • Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]