- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
П
ри
условиях близких к равновесным, т.е. при
очень медленном охлаждении, интенсивность
диффузии велика, и в каждый момент
времени составы фаз достигают равновесных
значений. При неравновесных условиях
выделения второй фазы происходят путем
образования и роста зародышей на наиболее
энергетически выгодных местах (границах
зерен). При распаде с образованием
зародышей, неизбежно растет свободная
энергия на начальном этапе, из-за
образования новой поверхности. Второй
путь распада - спинодальный распад,
когда расслоение твердого раствора
происходит путем возникновения и
развития концентрационных неоднородностей,
как правило периодического профиля,
без образования зародыша новой фазы, а
следовательно без увеличения свободной
энергии на начальном этапе.
Распад
с образованием зародышей разделяют на
2: непрерывный и прерывистый. При
непрерывном с исходном твёрдом растворе
образуются и растут отдельные выделения
новой фазы, матрица обедняется одним
из компонентов и в ней создается градиент
концентраций. Кристаллы новой фазы
будут расти за счет обычной нисходящей
диффузии (показано стрелками на рис ),
пока не установится равновесная
концентрация с1.
Скорость
роста контролируется коэффициентом
объемной диффузии в матрице.
При прерывистом распаде в зернах исходного перенасыщенного раствора α0 зарождаются и растут ячейки (колонии) двухфазной смеси α1 и β. Причем у α1 также решетка как у α0. Получается пластинчатая структура. Процесс контролируется диффузионным распределением компонентов между пластинами вдоль межфазной границы, т.к. пластины тонкие скорость высокая при низкой температуре.
Спинодальный распад наблюдается когда все 3 фазы (с исходной) характеризуются изоморфным строением (близкие параметры решеток, одинак типы).
Диаграмма с линией расслоение MKN и спинодалью RKV.
Ниже энергии Гиббса при разных Т. При Т1 и Т2 еще устойчив однофазный тв раствор. При Т3 энергия смеси G2 меньше чем раствора G1. В точках перегиба S1 и S2 вторая производная G равна нулю, а между ними меньше нуля. Именно в этом интервале сплавов малейшее расслоение приводит к уменьшению энергии Гиббса. Расслоение сплава С0 на Ср и Сq снижает энергию Гиббса до G3. Таким образом для сплавов лежащих по составу между S1и S2 (спинодальные точки) распад происходит путем постепенного увеличения концентрации расслоения, начиная с близких к С0 (Ср и Cq) до равновесных.
На практике такой распад выглядит как образование флуктуационных волн концентраций. При спинодальном распаде восходящая диффузия, для понижения свободной энергии до G2.
21) Краевая дислокация. Строение. Энергия краевой дислокации.
К
раевая
дислокация - локализованное искажение
кристаллической решетки, вызванное
наличием лишней атомной полуплоскости
(экстраплоскости)
1
-плоскость
скольжения; 2-экстраплоскость; 3-ядро
дислокации
Е
сли
экстраплоскость находится в верхней
полуплоскости то она положительна, а
если в нижней – отрицательна. Вектор
Бюргерса - главная характеристикой
дислокации - мера искаженности
кристаллической решетки, обусловленной
присутствием в ней дислокации. Чтобы
его оценить строят контур Бюргерса,
представляющий замкнутый контур
произвольной формы, условно выделенный
в реальном кристалле путем последовательного
обхода дефекта от атома к атому в
совершенной области кристалла. В краевой
дислокации вектор Б. перпендикулярен
к ее линии. Вектор Бюргерса определяет
энергию дислокации, величину связанного
с дислокацией сдвига, позволяет оценить
подвижность дислокации.
-энергия краевой дислокации.
G
– модуль сдвига; m
– коэффициент Пуассона (для металлов
»m⅓);
ro
–
радиус ядра дислокации (несколько
межатомных расстояний), R
– расстояние, на которое распространяется
упругая деформация от дислокации.
(Контур и вектор Бюргерса-для определения энергии)
