- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
113)Мартенситностареющие высокопрочные стали.
Мартенситностареющие стали представляют собой сплавы железа с никелем (8 — 20%), а часто и с кобальтом. Для протекания процесса старения в мартенсите сплавы дополнительно легируют Тi, А1, NЬ, Co, Мо. Упрочнение этих сталей достигается в результате получения мартенситной структуры в процессе закалки и старения мартенсита.
Никель и кобальт, уменьшая растворимость Аl, Мо в а-железе, способствуют упрочнению при старении и одновременно повышают сопротивление хрупкому разрушению. Кобальт, повышая точку Ми, позволяет увеличить концентрацию в стали элементов, вызывающих, упрочнение при старении. При введении кобальта, таим образом, уменьшается вероятность получения после закалки большого количества остаточного аустенита. Наиболее эффективно упрочняют сталь при старении Ве, Тi и Аl вследствие образования упрочняющих фаз.
Хром упрочняет мартенсит сталей Fе — Ni — Тi и Fе — Ni — Аl при старении и повышает сопротивление коррозии.
Мартенситностареющие стали с 10—12% Сг обладают хорошей сопротивляемостью коррозии.
Мартенситностареющие стали применяют в авиационной промышленности, в ракетной технике, в судостроении, в приборостроении для упругих элементов, в криогенной технике п т. д. Эти стали дорогостоящие.
113)Высокопрочные трип-стали.
Желтый Лахтин «металловедение и термическая обработка металлов» стр 326
Также называют ПНП-стали (пластичность наведенная превращением)
-Аустенитные стали, обладающие высоким комплексом механических свойств.
Содержат: 0,2-0,3% C, 8-10% Cr , 8-25% Ni, 4% Mo, 1-2.5% Mo(опечатка наверно марганец), 2%Si
(по википедии Углерод до 0,02% Кремний до 2,0% Хром 8,0—14,0% Никель 8,0—32,0% Марганец 0,5—2,5% Молибден2,0—6,0%)
Отличительная способность сталей – точка мартенситного превращения Мн лежит при отрицательной температуре, а Мд (начало образования мартенсита деформации)-при температуре выше комнатной.
Для придания стали высоких механических свойств после закалки с 1000-1100 С на аустенит ее деформируют при 450-600 С. В процессе деформации аустенит претерпевает наклеп и обедняется углеродом за счет выделения карбидов (дисперсионное упрочнение). При этом создается такое такое положение мартенситных точек, когда Мн – ниже комнатной, а Мп выше. После такой обработки, благодаря наклепу и деформационному старению трип стали наряду с выской прочностью (σв=1800-2000МПА, σ0.2=1400-1700МПА) обладают хорошей пластичностью (δ=100-150%.).
Высокая пластичность объясняется тем, что в процессе испытания на растяжение, когда происходит локализация деформации, аустенит в этом месте превращается в мартенсит, упрочняющий образец, и деформация сосредотачивается в соседних объемах аустенита. Следовательно превращения аустенита, в процессе испытания в мартенсит деформации исключает возможность образования «шейки», что объясняет высокую пластичность.
ПО ВИКИПЕДИИ применение и структура
Применяется для изготовления высоконагруженных деталей: проволоки, тросов, крепежных деталей. В наибольшей степени данные свойства стали востребованы в современной автомобильной промышленности так как может быть использована для производства более сложных деталей, обеспечивая большую свободу инженерам при выборе дизайна, оптимизации (снижении) веса и общей технологии производства автомобиля.
Для получения желаемого комплекса свойств необходимо провести рекристализацию с последующим охлажденим со скоростями позволяющими подавить диффузию углерода. Возникают следующие структуры:
Феррит
Карбид железа(именно поэтому используется сплав кремния, чтобы снизть образования карбидов)
Высокоуглеродистый аустенит
Для снялитя напряжений структура выдерживается определенное время при температуре Tb, с тем чтобы резко охладить до комнатной температуры. При этом возникают следующие структуры:
Феррит
Насыщенный карбидом бейнит
Метастабильный насыщенный углеродом аустенит
