- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
112)Конструкционные машиностроительные цементированные стали.
Для цементируемых изделий применяют низкоуглеродистые (0,1—0,25% С) стали. После цементации, закалки и низкого отпуска этих сталей цементованный слой должен иметь твердость НRС 58 — 62.
Для получения высокой твердости, контактной выносливости и предела устойчивости и предела устлости при изгибе; после химико-термической обработки цементированный слой должен обладать высокой прокаливаемостью. После закалки слой должен иметь мартенситно-аустенитную структуру без продуктов перлитного и промежуточного превращений переохлажденного аустенита.
Сердцевина цементуемых сталей должна обладать высокими механическими свойствами, особенно повышенным пределом текучести, кроме того, она должна быть наследственно мелкозернистой.
Увеличение действительного зерна в цементованном слое после термической обработки вызывает уменьшение контактной выносливости, предела выносливости, сопротивления хрупкому разрушению и увеличение деформации обработки.
Высокое содержание легирующих элементов не рекомендуется, поскольку затрудняет применение непосредственной закалки их после цементации.
Цементуемые стали должны хорошо обрабатываться резаньем, поэтому предварительная термическая обработка должна обеспечивать оптимальную структуру.
Хромистые стали. Хром — сравнительно дешевый элемент для легирования стали. В конструкционных сталях он частично растворен в феррите, частично в цементите, образуя карбид (Fе, Сr)эС.
Для изделий простой формы, цементуемых на глубину 1,0—1,5 мм. В хромистых сталях в большей степени развивается промежуточное превращение при закалке с охлаждением в масле, выполняемой после цементации, сердцевина изделия имеет бейнитное строение. Вследствие того хромистые стали по сравнению с углеродистыми обладают более высокими прочностными свойствами при меньшей пластичности в сердцевине и лучшей прочности в цементованном слое. Хромистая сталь чувствительна к перегреву и при цементации можно получать повышенное содержание углерода в поверхностном слое. Прокаливаемость хромистых сталей невелика.
Хромованадиевыс стали. Легирование хромистой стали ванадием (0,1—0,2%) улучшает механические свойства (20ХФ). Кроме того, хромованадиевые стали менее склонны к перегреву. Из-за малой прокаливаемости их используют только для сравнительно небольших изделий.
Хромоникелевые стали. Для крупных деталей ответственного назначения, испытывающих значительные динамические нагрузки, применяют хромоникелевые и более сложнолегированные стали.
Одновременное легирование хромом и никелем, который растворяется в феррите, повышает прочность, пластичность и вязкость сердцевины и цементованного слоя.
• Хромоникелевые стали малочувствительны к перегреву при длительной цементации и не склонны к пересыщению поверхностных слоев углеродом. Большая устойчивость переохлажденною аустенига в области перлитного и промежуточного превращений обеспечивает высокую прокаливаемость хромоникелевой стали. Это же позволяет закалить крупные детали в масле, а в некоторых случаях и навоздухе,
Легирование хромоиикслевых сталей вольфрамом (или молибденом) дополнительно повышает устойчивость переохлажденною аустенита, а следовательно, и прокаливаемость. Сталь 18Х2Н4МЛ или соответствующую ей сталь с вольфрамом 18Х2Н4ВА применяют для крупных тяжелонагруженных деталей.
Вследствие высокой устойчивости переохлажденного аустенита, детали сечением до 150 — 200 мм из стали 18Х2Н4МА закалившиются при охлаждении на воздухе, что еще больше уменьшает коробление. Критический диаметр прокаливаемости (95% мартенсита) =100 мм, а порог хладноломкости (-80 - -100)°-С .
Стали 12ХНЗА, 20ХНЗА, 20Х2Н4А, 12Х2Н4А, 18Х2Н4ВА и др. при закалке в масле приобретают в сердцевине структуру нижнего бейнита или низкоуглеродистого мартенсита, что приводит к значительному упрочнению стали. В результате цементации повышается устойчивость ереохлажденного аустенита в поверхностном слое, особенно в зоне промежуточного превращения, поэтому при закалке в масле на поверхности образуется высокоуглеродистый мартенсит, обладающий высокой твердостью. Однако следует иметь в виду, что при насыщении стали углеродом понижается температура мартенситного превращения в поверхностном слое и возрастает количество остаточного аустенита, особенно в сталях 18Х2Н4ВА и 20Х2Н4А. Остаточный аустенит понижает твердость, сопротивление износу и предел выносливости.
Снижение количества остаточного аусгенита достигается обработкой холодом (от —100 до — 120°С) после закалки или применением промежуточного высокого отпуска (600 — б40°С) с последующей закалкой при возможно более низкой температуре.
При высоком отпуске из аустенита выделяются легированные карбиды. При последующем нагреве под закалку значительная часть карбидов остается вне твердого раствора, а менее легированный аустенит при охлаждении превращается в мартенсит, и поэтому количество остаточного аустенюа уменьшается, а твердость повышается.
Сталь после такого высокого отпуска характеризуется меньшей прокаливаемостью при последующей закалке. При обработке холодом уменьшается количество остаточного аустенита и повышается твердость, однако происходи! некоторое снижение предела выносливости, износостойкости и вязкости по сравнению с высоким отпуском.
Сталь 18Х2ЖВА из-за высокой устойчивости аустенита в перлитной области не снижает твердости при отжиге. Для возможности обработки резанием сталь подвергают высокому отпуску при 630~640°С, после которого она получает твердость НВ 269 — 217.
Хромомарганцевые стали. Mn — дешевый элемент, применяется как заменитель в стали никеля. Как и хром, марганец растворяется в феррите и цементите. Повышая устойчивость аустенита, Mn снижает критическую скорость закалки н повышает прокаливаемость стали.
Хромомарганцевые стали применяют вместо дорогих хромоникелевых. Однако эти стали менее устойчивы против перегрева и имеют меньшую вязкость по сравнению с хромоникелевыми. Введение небольших количеств титана, образующего труднорастворимые в аустените карбиды ТiС, уменьшают склонность хромомарганцевых сталей к перегреву.
В автомобильной п тракторной промышленности, а также в станкостроении применяют стали 18ХГТ и 25ХГT. Эти стали склонны к внутреннему окислению при газовой цементации, что снижает твердость цементованного слоя и предел выносливости, поэтому широко применяют сталь 25ХГМ, легированную молибденом. Молибден, повышая прокаливаемость слоя, устраняет вредное влияние внутреннего окисления н обеспечивает максимальную его твердость.
Хромомарганцевоникелевые стали. Повышение прокаливаемости и прочности хромомарганцевых сталей достигается дополнительным легированием их никелем.
В автомобильной и тракторной промышленности нашли применение стали 15ХГН2ТА, 25Х2ГНТА и др. Эти стали приближаются по своим механическим и технологическим свойствам к хромоникелевым сталям.
Стали, легированные бором. Для цементации (нитроцементации) используют также стали, содержащие бор (в количестве 0,001-0,005%). Бор повышает устойчивость переохлажденного аустенита в области перлитного превращения и поэтому увеличивает прокаливаемость стали.
• Повышение устойчивости аустенита связано с тем, что бор, присутствуя преимущественно по границам зерен, тормозит образование зародышей перлита. Однако при повышенном содержании бора образуются бориды железа, уменьшающие устойчивость аустенита.
;• Бор повышает прокаливаемость лишь доэвтектоидных сталей, содержащих ^ 0,5—0,6% С, но не улучшает прокаливаемость цементованного слоя. Легирование бором повышает прочностные свойства после закалки и низкого отпуска, не изменяя или несколько снижая вязкость и пластичность. Бор делает сталь чувствительной к перегреву, поэтому такая сталь, как правило, должна быть наследственно мелкозернистой (балл 7—10). Легирование бористой стали титаном повышает ее устойчивость против перегрева. В промышленности для деталей, работающих в условиях износа при трении, применяют сталь 20ХГР. Дополнительное легирование стали 20ХГР никелем повышает прокаливаемость, пластичность и вязкость, поэтому сталь 20ХГНР применяют для некоторых деталей вместо хромо-никелевых сталей типа 12ХНЗА.
