- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
89. Влияние легирующих элементов на вид с-образных кривых.
Легирующие элементы могут разделять с-образные кривые и сдвигать их друг относительно друга:
90. Принципы определения класса легированной стали по Гийе.
Им было предложено классифицировать стали, исходя из структуры, получаемой при охлаждении с 900С на воздухе образцов небольших размеров (диаметр 25 мм, длина 100 мм). Согласно этой классификации стали делятся на пять классов: перлитный, ферритный, мартенситный, аустенитный и карбидный.
91. Принципы определения класса легированной стали по Оберхофферу.
Классификация по структуре в равновесном состоянии: перлитный, аустенитный, ферритный и карбидный классы. Первая группа объединяет элементы, расширяющие температурный интервал существования гамма-фазы в сплавах Fe с легирующим элементом. Расширение связано с понижением температуры А3 и повышением А4 при увеличении концентрации легирующего элемента. Вторая группа объединяет легирующие элементы в сплавах с Fe, сужающие температурную область существования гамма-фазы. Они понижают точку А4 и повышают точку А3.
92. Классификация сталей по применению.
А)конструкционные: 1)углеродистые: а)кипящие; б)полуспокойные; в)спокойные; 2)строительные; 3)автоматные; 4)цементируемые; 5)машиностроительные; 6) мартенситостареющие; 7) трип-стали (высоколегированные стали); 8) рессорнопружинные; 9) шарикоподшипниковые; 10) износостойкие (сталь Гадфильда); 11) жаропрочные и жаростойкие; 12) коррозионностойкие; Б) машиностроительные; В) инструментальные: 1) для режущего инструмента; 2) штамповые стали; Г) стали для железодорожных конструкций; Д) строительные; Е) с особыми физическими свойствами: 1)магнитные стали и сплавы (магнитотвердые и магнитомягкие) 2)электротехнические стали и сплавы; 3) сплавы с малым температурным коэф-ом линейного расширения; 4)сплавы для упругих элементов; 5)сплавы с эффектом памяти формы.
93. Физические свойства и кристаллическая структура меди
Медь(порядковый номер 29, атомная масса 63,54)-металл красного цвета с плотностью 8,9г/см³,температура плавления 1083°С.предел прочности 200-250МПа,отн. удлинение 50%,отн.сужение 75%.Медь имеет ГЦК решетку с периодом 0,36нм.Аллотропическое превращение медь не испытывает до температуры плавления. Она обладает высокой удельной электропроводностью, теплопроводностью, пластичностью, коррозионной стойкостью.
94. Взаимодействие меди с примесями.
Наилучшим легирующим компонентом проводниковой меди является кадмий, т.к. его предел растворимости в меди не велик (менее 0,3%). Соединение Cu2Cd является упрочняющей фазой, повышающей предел прочности сплава Cu-Cd (кадмиевой бронзы) до 700МПа. Вредными примесями, снижающими механические и технологические св-ва меди и ее сплавов, являются Bi, Pb, S и кислород. Висмут и свинец почти не растворимы в меди и образуют легкоплавкие эвтектики по границам зерен, что способствует красноломкости и ухудшает способность к горячей деформации. Примеси О и S образуют с медью хрупкие хим.соединения Cu2O и Cu2S, входящие в состав эвтектики. На электропров эти примеси влияют слабо. Сера улучшает обрабатываемость меди резанием, но приводит к хладноломкости. Кислород, если он присутствует в Cu, образует закись меди и вызывает «водородную болезнь». Кислород при отжиге изделий из Cu в водороде вызывает растрескивание, потерю прочности
