- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
80) Модифицирование чугунов. Механизм и получаемые свойства.
Модифицированный чугун получают при добавлении в жидкий чугун перед разливкой специальных добавок – модификаторов (графит, 75%-ый ферросилиций, силикокальций в количестве 0,3-0,8% и т. д.). Модифицирование применяют для получения в чугунных отливках с различной толщиной стенок перлитной металлической основы с вкраплением небольшого количества изолированных пластинок графита средней величины. Модифицирование наиболее эффективно при использовании чугуна определенного состава и перегреве его перед модифицированием до 1400 град. С. Перегрев обеспечивает измельчение графитных включений и способствует получению более плотных отливок. Модифицированию подвергают низкоуглеродистый чугун, содержащий сравнительно небольшое количество кремния и повышенное количество марганца и имеющий без введения модификатора структуру половинчатого чугуна, т.е. ледебурит,перлит и графит.
81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
Все растворимые в твердом железе элементы можно разделить на две группы по их действию на его аллотропию. 1-я группа объединяет элементы, расширяющие температурный интервал существования γ-фазы в сплавах с Fe (γ –стабилизаторами). Расширение связано с ↓Т А3 и ↑Т А4 при ↑ концентрации легирующего элемента. К γ -стабилизаторам относятся Ni, Mn, Co, Cu, C, N и некоторые другие элементы. 3 первых элемента при большой концентрации полностью открывают γ-область(α -фаза не появляется), остальные лишь расширяют ее. 2-я группа объединяет легирующие элементы, расширяющие в сплавах с Fe температурный интервал существования α-фазы (α-стабилизаторы). Они понижают А4 и повышают точку А3. Это приводит к тому, что при определенной концентрации таких элементов критические точки А4 и А3 сливаются и область существования γ-фазы исчезает. α-стабилизаторы: Si, Cr, Mo, V, W, Zr, Ti, B, Nb. 5 первых элементов при определенной концентрации закрывают область существования γ-фазы, остальные лишь сужают ее.
82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
Для достижения высокой прокаливаемости сталь чаще легируют как дешевыми элементами – марганцем, хромом и бором, так и более дорогими – никелем и молибденом. Однако, следует иметь в виду, что по достижении необходимой для данного сечения прокаливаемости дальнейшее увеличение в стали легирующих элементов может не улучшить, а, напротив, ухудшить механические, технологические (обработку резанием, свариваемость и т. д.) свойства стали.
Никель повышает сопротивление хрупкому разрушению стали, увеличивая пластичность и вязкость, уменьшая чувствительность к концентраторам напряжений, и понижает температуру порога хладноломкости.
Стали микролегированные (до0,05-0,15%) V, Ti, Nb, и Zr, образующие труднорастворимые в аустените карбиды, измельчают зерно и снижают количество углерода в феррите, что понижает порог хладноломкости, повышает работу распространения трещины КСТ и уменьшает чувствительность к концентраторам напряжений. При большом содержании этих элементов прокаливаемость и сопротивление стали хрупкому разрушению уменьшаются из-за выделения большого количества карбидов (VC, TiC и др.) по границам зерен.
Легирующие элементы существенно повышают прочность стали после улучшения, упрочняя ферритную основу (в том числе и за счет сохранения большей плотности дефектов строения) и увеличивая дисперсность карбидных частиц.
Для подавления обратимой отпускной хрупкости сталь легирую 0,15-0,4% молибдена, что очень важно для крупных изделий, в которых даже при охлаждении в воде от температур отпуска нельзя устранить эту хрупкость. Кроме того, молибден повышает прокаливаемость (особенно в сочетании с никелем), устойчивость стали после отпуска и способствует образованию мелкозернистой стали.
Кремний замедляет процесс отпуска мартенсита и является полезным легирующим элементом для сталей, подвергаемых изотермической закалке.
