- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
58) Закалочное старение. Причины. Режимы проведения
Закалочным старением называют изменение свойств и структуры с течением времени при комнатной температуре или при нагревании сплава, имеющего структуру закаленного с высоких температур твердого раствора. Этот раствор пересыщен и распадается при старении. при закалочном старении технического железа его нагревают до температуры ниже точки А1(600-700С), быстро охлаждают (закалка) и затем снова нагревают до более низкой Т. Закалочное старение происходит в результате изменения растворимости углерода в α-железе в зависимости от температуры. Проводится закалка с температуры 650-700°С и в результате получается пересыщенный α раствор. При последующей выдержке при комнатной температуре (естественное старение) или при повышенной температуре (искусственное старение) происходит распад твердого раствора с выделением мелко дисперсных карбидов.
59.Закаливаемость. Определение. Влияющие факторы
Под закаливаемостью понимают способность стали приобретать высокую твердость после закалки. Такая способность зависит главным образом от содержания углерода в стали: чем больше углерода, тем выше твердость. Объясняется это тем, что с повышением содержания углерода увеличивается число атомов, насильственно удерживаемых при закалке в атомной решетке железа. Иными словами, увеличивается степень пересыщения твердого раствора углерода в железе. В результате возрастают внутренние напряжения, что, в свою очередь, способствует увеличению числа дислокаций и возникновению блочной структуры.
Если в углеродистой стали содержание углерода будет меньше 0,3% (сталь 20, Ст3), то такая сталь уже не закалится. Для того чтобы понять это, следует вспомнить, что образование мартенситной структуры связано с перестройкой атомной решетки железа из гранецентрированной в объемно-центрированную. Температура, при которой происходит такая перестройка, зависит от содержания углерода. Роль углерода сводится к тому, что атомы его, находясь в решетке железа, как бы препятствуют перегруппировке атомов, которая необходима для перестройки решетки. Чем больше содержание углерода, тем ниже будет температура, при которой произойдет перестройка, т. е. образуется мартенситная структура. Как можно видеть, при содержании углерода 0,2% мартенситное превращение должно происходить при сравнительно высокой температуре — примерно 350—400°С. При такой температуре углерод еще сохраняет достаточно высокую подвижность и при перестройке решетки выходит из состояния твердого раствора, образуя химическое соединение — цементит. Пересыщение твердого раствора получается совсем незначительным, и потому структура закалки — мартенсит — не образуется.
60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
Под прокаливаемостью понимают глубину проникновения закаленной зоны, т. е. свойство стали закаливаться на определенную глубину от поверхности. Если, например, сверло диаметром 50 мм, изготовленное из инструментальной углеродистой стали, закалить в воде, а затем замерить твердость его в поперечном сечении, то окажется, что во внутренней зоне, расположенной вдоль оси сверла (сердцевине), твердость будет почти такой же, как до закалки, в то время как в наружной зоне, расположенной у поверхности, твердость резко повысится. Проверив затем микроструктуру, можно будет убедиться, что в сердцевине она будет перлитного типа, а у поверхности — мартенситного. Несквозная закалка объясняется неравномерным охлаждением детали при закалке: поверхность всегда охлаждается быстрее, чем сердцевина. Неравномерность охлаждения вызывается различными условиями теплоотвода у поверхности и в сердцевине. При погружении раскаленной детали в закалочную среду поверхность, соприкасаясь с холодной жидкостью, охлаждается с большой скоростью, в то время как отвод теплоты от сердцевины затруднен толщей горячего металла, и потому она охлаждается медленно. В результате скорость охлаждения поверхности оказывается выше критической, и поверхность закаливается, а скорость охлаждения сердцевины получается ниже критической, и последняя не закаливается. Тогда ясно, что слои металла, расположенные на большей глубине, не закалятся, а слои, расположенные на меньшей глубине, т. е. ближе к поверхности, закалятся. Глубина проникновения закаленной зоны, т. е. прокаливаемость, зависит главным образом от химического состава стали. С повышением содержания углерода до 0,8% прокаливаемость стали повышается. Дальнейшее повышение его содержания несколько снижает прокаливаемость.
Из всего сказанного о влиянии легирующих элементов на прокаливаемость стали следуют два очень важных вывода:
1) при использовании легированных сталей можно получить сквозную прокаливаемость в деталях большого сечения, которые невозможно закалить насквозь при изготовлении их из углеродистой стали;
2) применение легированной стали вместо углеродистой позволяет снизить скорость охлаждения, необходимую для закалки, и использовать в качестве охладителя взамен воды — масло. В результате снижаются закалочные напряжения, уменьшается коробление и опасность образования трещин.
Наряду с химическим составом на прокаливаемость оказывают влияние и некоторые другие факторы: однородность аустенита, отсутствие в нем карбидов и иных примесей и включений, величина зерна и др. Чем однороднее аустенит и больше размер его зерен, тем выше будет прокаливаемость.
