- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
Если в равновесии с жидкой фазой, аустенитом и ферритом нах-ся графит, то равновесие является стабильным. В случае, когда равновесие с этими фазами, т.е. растворами на базе Fe, нах-ся цементит, равновесие явл метастабильным. В обоих случаях равновесию любого сплава Fe – С заданного состава соответствует минимум термодинамического потенциала, но его минимальное значение в случае стабильного равновесия меньше, чем в случае метастабильного равновесия. На рис. показано изменение своб энергии в стабильной и метастабильной системе в ф-ции содержания углерода при высокой темп-ре, при кот в равновесии нах-ся аустенит. Видно, что уменьшение своб энергии (ΔF) должно приводить к распаду цементита (графитизации). Видно также, что содержание углерода в аустените в стабильной системе (С’) ниже, чем в метастабильной (С). Сказанное относится и к равновесию феррита с графитом или цементитом.
50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
52)Перечислить дефекты структуры в сталях.
Для вторичной микроструктуры горячедеформированной углеродистой стали характерны: строчечное расположение неметаллических включений и полосчатое расположение доэвтектоидного феррита и перлита (полосчатая структура). Образование полосчатой структуры обусловлено неоднородностью распределения фосфора в аустените. Полосчатая структура обусловливает анизотропию механических св-в горячедеформированных изделий. Большой размер зерна первичного аустенита приводит к появлению еще одной аномалии во вторичной микро структуре углеродистой стали – образованию видманштеттовой структуры. Эта структура характеризуется пластинчатыми образованиями доэвтектоидного феррита или игольчатыми – вторичного цементита, ориентированно располагающимися на темном фоне перлита. Возникновение такой структуры связано с тем, что, например, в доэвтектоидной стали избыточный феррит выделяется не только на границах, но и внутри крупных зерен аустенита. Помимо большого размера зерна аустенита, образованию видманштеттовой структуры способствует ускоренное охлаждение стали от высоких температур. Сталь с такой структурой обладает повышенной хрупкостью.
53) Принципы маркировки сталей.
Для обозначения марок стали разработана система, принятая в ГОСТах. Обозначения состоят из небольшого числа цифр и букв, указывающих на примерный состав стали. Каждый легирующий элемент обозначается буквой: Н - никель; Х - хром; К - кобальт; М - молибден; Г - марганец; Д - медь; Р - бор; Б - ниобий; Ц - цирконий; С - кремний; П - фосфор, Ч - редкоземельные металлы; В - вольфрам; Т - титан; А - азот (буква А в середине марочного обозначения указывает на наличие азота, специально введенного в сталь); Ф - ванадий; Ю – алюминий.
Первые цифры в обозначении показывают среднее содержание углерода в сотых долях процента (у высокоуглеродистых инструментальных сталей в десятых долях процента). Цифры, следующие после буквы, указывают на примерное содержание данного легирующего элемента (при содержании элемента менее 1 % цифра отсутствует; при содержании около 1 % - цифра 1 и около 2 % - цифра 2 и т.д.).
Следовательно, сталь состава 0,10-0,15 % С и 1,3-1,7 % Mn будет обозначаться 12Г2; сталь состава 0,28-0,35 % С; 0,8-0,11 % Cr; 0,9-1,2 % Mn; 0,8-1,2 % Si - 30ХГС и т.д.
Чтобы показать, что в стали ограничено содержание серы и фосфора (S<0,03 % и P<0,03 %), а также соблюдены все условия металлургического производства высококачественной стали, в конце обозначения марки ставят букву А. (Буква А в середине марочного обозначения указывает на наличие азота, специально введенного в сталь). Особо высококачественная сталь обозначается буквами Ш, ВД, ВИ, ПД и т.д. в конце наименования марки, где ВД обозначает, что сталь или сплав получен вакуумно-дуговым переплавом, Ш - электрошлаковым переплавом, ВИ - методом вакуумно-индукционной выплавки, ПД - плазменно-дуговым и т.д.
Наименование марок сплавов состоит только из буквенных обозначений элементов. Исключение составляет никель, после обозначения которого указываются цифры его среднего содержания в процентах.
Однако в ряде случаев для сокращения числа знаков в обозначении несколько отступают от точного соблюдения системы ГОСТов (особенно это относится к сложнолегированным сталям). Нестандартные стали обозначают самым различным образом. Так, опытные марки, выплавленные на заводе "Электросталь", обозначаются буквой И (исследовательские) и П (пробные) и порядковым номером, например, ЭИ179, ЭИ276, ЭП398 и т.д. Опытные марки, выплавленные на металлургическом заводе "Днепроспецсталь", обозначают ДИ 80, где Д - завод-изготовитель, И - исследовательская, 80 - порядковый номер, присвоенный марке стали.
В инструментальных сталях, имеющих углерода более 1 %, цифры, обозначающие его содержание, полностью опускают. Так, инструментальная сталь с 1,45-1,70 % С; 11-12,5 % Cr и 0,5-0,8 % Mo обозначается Х12М.
При маркировке электротехнических сталей (типа 1211, 1313, 2211 и т.д.) в обозначении марки цифры означают: первая - класс по структурному состоянию и виду прокатки; вторая - содержание кремния; третья - группу по основной нормируемой характеристике. Вместе первые три цифры в обозначении марки означают тип стали; четвертая - порядковый номер типа стали.
Для изготовления строительных стальных конструкций со сварными и другими соединениями применяются марки стали типа С235, С245, С255, С345, С590К и т.д. Буква С означает сталь строительная, цифры условно обозначают предел текучести проката, буква К - вариант химического состава. По требованию потребителя массовая доля меди в стали С345, С375, С390, С440 должна быть 0,15 - 0,30 %, при этом к обозначению стали добавляется буква Д, например, С345Д.
Для изготовления рельсов широкой колеи типов Р75, Р65 и Р50 применяются стали марок М76 и М74, где буква М указывает способ выплавки (мартеновский), цифры - среднее содержание углерода в сотых долях процента. Рельсы узкой колеи типа Р33 изготавливаются из спокойной углеродистой стали. В зависимости от содержания углерода они подразделяются на нормальные (категория Н), твердые (категория Т) и повышенной твердости (категория ПТ).
Прокат из стали повышенной прочности изготовляют классов прочности: 265, 295, 315, 325, 345, 355, 375, 390 и 440, где цифры обозначают предел текучести.
Для изготовления конструкций, работающих при низких температурах, применяется сталь марок ОН9, ОН9-Ш, ОН6Б, ОН3, ОН6 и т.д. Содержание углерода в них не более 0,1 %, цифра после буквы Н указывает содержание никеля в целых единицах (например, ОН9 содержит около 9 % никеля).
Углеродистые литейные стали маркируются числом, обозначающим среднее содержание углерода (в сотых долях процента), и буквой Л.
Несмотря на то, что для всех сталей невозможно применить в полном объёме систему маркировки ГОСТов, она все же наиболее удобна, наглядна и значительно превосходит в этом отношении принятую в других странах систему маркировки стали.
