- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
Для краевой дислокации вектор Бюргерса b параллелен плоскости сдвига и перпендикулярен экстраплоскости.
энергия краевой дислокации =>
где G – модуль сдвига; m – коэффициент Пуассона (для металлов m»⅓);
ro – радиус ядра дислокации (несколько межатомных расстояний)
R – расстояние, на которое распространяется упругая деформация от дислокации.
42. Что такое линия Чернова – Людерса и причины их возникновения.
Еще в 1860 г. Людерс, а затем независимо от него Чернов обнаружили, что при растяжении образцов железа и стали на их поверхности образуются специфические фигуры. Чернов связал их возникновение с волнами упругих напряжений. Он обнаружил, что предварительно отполированные образцы становятся
Рис. 7.1. Линии деформации, выявленные Д.К. Черновым при резке листа и пробивании отверстия: а - лист, из которого вырезали образцы; е - точками обозначены места, где волны напряжений интерферируют
матовыми, и пришел к заключению, что мягкая литая сталь обладает драгоценным свойством – способностью фиксировать на своей полированной поверхности рисунок волн упругих напряжений, если усилия превосходят предел упругости.
На рис. 7.1 воспроизводятся оригинальные рисунки из сообщения Чернова. Было обращено внимание на то, что одни линии деформации вогнутые, а другие – выпуклые. Чернов показал, что вогнутые линии связаны с локальными впадинами на поверхности, образующимися в результате действия растягивающих волн напряжений, а выпуклые (локальное выпучивание) – с действием сжимающих напряжений.
В современной трактовке перемещение полос Чернова-Людерса по поверхности деформируемого образца рассматривается как автоволновой процесс.
Ротационные процессы существенно изменяют состояние поверхности деформируемого образца, а следовательно и условия рассеяния света на ней. Подтверждением связи распространения полос Чернова–Людерса с волновой природой пластической деформации является совпадение скоростей распространения этих волн и фронта полосы. Последнюю измеряют путем регистрации распространения полосы на видеопленку.
43)Рост зерна при нагреве металла.
вопрос №25
44)Вывести формулу для определения критического размера зародыша при кристаллизации.
Энергетическое состояние системы характеризуется особой термодинамической функцией G, называемой свободной энергией Гиббса.
При температуре Т0 свободные энергии двух фаз равнф, эта температура называется равновесной теоритической температурой или температурой термодинамического равновесия (рис.1).
При T0: GL=GS, где GL и GS – свободные энергии Гиббса жидкой и твердой фаз.
Свободная энергия Гиббса может быть определена следующим образом:G=E-TS+PV,где Е – внутренняя энергия, S – энтропия, Т – абсолютная температура (К), V – объем, Е+РV = H, где Н – энтальпия. Тогда свободная энергия может быть выражена в виде: G=H-TS[1]
Так как при Т0 GL=GS, то
HL – T0SL = HS – T0SS
HL – HS = T0(SL – SS) [2]
HL – HS = L, [3]
где L – скрытая теплота плавления.
SL – SS = ∆S [4]
Тогда L = ∆ST0
то есть ∆S = L/T0 [5]
Для начала процесса кристаллизации необходимо переохлаждение ниже температуры Т0.
Величиной или степенью переохлаждения называется разность между температурой термодинамического равновесия (Т0) и фактической температурой (Т):
∆Т = Т0 – Т [6]
Зарождение кристаллитов
При любом фазовом превращении происходит изменение свободной энергии, которое описывается формулой:
∆G = – ∆Gоб + ∆Gгр
∆G = – (∆Gхим + ∆Gдеф) + (∆Gпов + ∆Gупр)
∆Gдеф = 0
∆Gупр = 0
∆G = – ∆Gхим + ∆Gпов [7]
Длязародыша сферической формы радиуса r:
∆Gхим = (∆GL – ∆GS)*(4/3)*πr^3, [8]
где (GL – GS) – разница свободных энергий жидкой (L) и твердой (S) фаз – движущая сила превращения; (4/3)πr^3 – объем зародыша сферической формы.
Обратимся к формулам [1] и [2], тогда можно записать:
(GL – GS) = (HL – HS) – T(SL – SS).
Согласно формулам [3], [4] и [5]:
GL –GS = L – T(L/T0)
Путем несложных математических вычислений, получаем:
GL –GS = L*(T0 – T)/T0.
Учитывая формулу [6]:
GL – GS = (L/T0)∆T Тогда формула [8] принимает вид:
∆G = – (L/T0)∆T(4/3)πr^3 [9]
Для сферического зародыша с радиусом r:
∆Gпов = 4π(r^2)γ, [10]
где γ – удельная поверхностная свободная энергия; 4πγr^2 – площадь поверхности зародыша сферической формы.
Принимая во внимание ф-лы [9] и [10], ф-лу [7] можно записать:
∆G
=
[11]
Для определения критического размера зародыша (rкр) приравняем к нулю первую производную от ∆G по r, т.к. rкр функция проходит через максимум:
Продифференцировав ф-лу [11], получим:
Решив это квадратное уравнение найдем:
[12].
