- •Термоупругое равновесие при полиморфном превращении.
- •Сдвиговой механизм пластической деформации.
- •Выращивание монокристаллов.
- •Что такое критическое скалывающее напряжение, от каких параметров зависит.
- •П араметры кристаллизации и их зависимость от переохлаждения.
- •Твердые растворы. Дальний и ближний порядок.
- •Что такое магнитоупорядоченное состояние (мус).
- •Ферромагнетизм
- •Диамагнетизм металлов
- •Парамагнетизм металлов
- •Механизм спинодального распада пересыщенного твердого раствора.
- •Текстура деформации. От каких параметров она зависит.
- •Различие магнитомягких и магнитотвердых материалов и его причины.
- •15) Распада твердого раствора по механизму образования и роста зародышей второй фазы.
- •16) Атомный механизм упрочнения.
- •17) Механизм коагуляции и сфероидизации.
- •18) Как изменяются физические свойства металлов в зависимости от степени деформации.
- •19) Основные различия между механизмами спинодального распада и распада твердого раствора путем образования и роста зародышей новой фазы.
- •21) Краевая дислокация. Строение. Энергия краевой дислокации.
- •22) Стадии старения и причины образования метастабильных фаз.
- •23) Принцип функционирования источника Франка-Рида
- •24) Схема возникновения дендритной ликвации и ее практическое использование.
- •25) Рост зерна при нагреве металла. (при отжиге)
- •26) Что такое линии Чернова –Людерса и причины их возникновения.
- •27) Вывести формулу для определения критического размера зародыша при кристаллизации.
- •28) Аномальный рост зерна и его практическое использование
- •29. Схема перемещения винтовой дислокации.
- •30.Нормальный механизм полиморфного превращения.
- •31. Мартенситный механизм полиморфного перемещения. (Бездиффузионный или мартенситный механизм полиморфного превращения)
- •32. Схема перемещения краевой дислокации.
- •33. Решетка совмещенных узлов (рсу).
- •34. Что такое «эффект памяти формы» и каков его механизм?
- •35. Кристаллическая структура и область существования модификаций Fe.
- •36. Что такое мартенсит? Металлографическая структура мартенсита.
- •37. Твердые растворы. Дальний и ближний порядок.
- •38. Атомный механизм упорядочения.
- •39. Сдвиговой механизм пластической деформации.
- •4 0. Механизм спинодального распада пересыщенного твердого раствора.
- •41. Краевая дислокация. Строение. Энергия краевой дислокации. (см вопрос 32)
- •42. Что такое линия Чернова – Людерса и причины их возникновения.
- •43)Рост зерна при нагреве металла.
- •44)Вывести формулу для определения критического размера зародыша при кристаллизации.
- •45)Физические свойства железа.
- •Кристаллическая структура модификаций Fe.
- •48) Цементит. Физические свойства и кристаллическая структура.
- •49) Обосновать факт более высокого содержания углерода в фазах метастабильной системы.
- •50)Построить кривую охлаждения по метастабильной системе сплава с х% углерода.
- •51) Построить кривую охлаждения по стабильной системе сплава с х% углерода.
- •52)Перечислить дефекты структуры в сталях.
- •53) Принципы маркировки сталей.
- •54) Условия образования видманштеттовой структуры.
- •56)Способы закалки. Обоснование режимов
- •57)Деформационное старение. Причины. Способы устранения
- •58) Закалочное старение. Причины. Режимы проведения
- •59.Закаливаемость. Определение. Влияющие факторы
- •60)Прокаливаемость. Определение. Измерение характеристик прокаливаемости
- •61)Полная и неполная закалка. Цель и режимы
- •62)Втмо. Принципы, режимы, получаемые результаты
- •63)Нтмо. Принципы, режимы, получаемые результаты
- •64)Термомагнитная обработка. Основные принципы
- •65)Хтмо. Основные принципы
- •66)Хтмо. Основные режимы, их обоснование и результаты
- •67)Связь переохлаждения аустенита с дисперсностью структуры
- •68)Построение с-образных кривых
- •69)Структуры, возникающие при изотермическом распаде аустенита и их механические свойства
- •70)Факторы, определяющие толщину пластин перлитных структур
- •71) Что такое деформация Бейна?
- •72) Что такое мартенсит?
- •73) Металлографическая структура мартенсита.
- •74) Металлографическая структура бейнита.
- •75) Бейнитное превращение. Механизм, структура.
- •76) Влияние структуры перлита на прочностные свойства стали.
- •77) Графитизация. Факторы, влияющие на графитизацию.
- •78) Отпускная хрупкость. Обратимая, необратимая. Причины, способы устранения.
- •79)Процессы, протекающие при отпуске закаленной стали.
- •80) Модифицирование чугунов. Механизм и получаемые свойства.
- •81) Классификация легирующих элементов по влиянию на аллотропические превращения железа.
- •82) Механизмы влияния легирующих элементов на свойства и структуру сплавов.
- •83) Механизмы влияния легирующего элемента на свойства фаз.
- •84) Принципы классификации легированных сталей.
- •85. Как различаются легирующие элементы по их взаимодействию с углеродом?
- •86. Привести примеры и дать схему диаграмм состояния для легирующих элементов, расширяющих гамма-область.
- •8 7. Привести примеры и дать схему диаграмм состояния для легирующих элементов, сужающих гамма-область.
- •89. Влияние легирующих элементов на вид с-образных кривых.
- •90. Принципы определения класса легированной стали по Гийе.
- •91. Принципы определения класса легированной стали по Оберхофферу.
- •92. Классификация сталей по применению.
- •93. Физические свойства и кристаллическая структура меди
- •94. Взаимодействие меди с примесями.
- •95. Что такое "водородная болезнь" в меди?
- •96. Латуни. Свойства и структура.
- •97. Оловянистые бронзы. Свойства и структура.
- •98. Свинцовистые бронзы. Составы, структура, свойства, применение.
- •103)Перечислить стадии старения сплавов Al-Cu.
- •1 08)Силумины. Состав, свойства, технология получения.
- •109)Конструкционные углеродистые стали.
- •110)Конструкционные строительные низколегированные стали.
- •111)Автоматные стали.
- •112)Конструкционные машиностроительные цементированные стали.
- •113)Мартенситностареющие высокопрочные стали.
- •113)Высокопрочные трип-стали.
- •114)Рессорно-пружинные стали.
- •115)Шарикоподшипниковые стали.
- •116)Износостойкая (аустенитная) сталь.
- •117)Коррозионностойкие стали.
- •118)Жаропрочные сплавы и стали.
- •119)Стали для режущего инструмента.
- •120)Штамповые стали для холодного прессования.
- •121)Штамповые стали для горячего прессования.
- •122)Сплавы для постоянных магнитов (магнитотвердые сплавы).
- •123)Магнитомягкие сплавы.
- •124)Магнитные сплавы.
- •125)Сплавы для нагревательных элементов.
- •126)Сплавы с заданным температурным коэффициентом расширения.
- •127)Дать определение температурам Мн, Мд и Мк, имеющим место при мартенситном механизме полиморфного превращения.
35. Кристаллическая структура и область существования модификаций Fe.
Структура решетки: кубическая объемоцентрированная. Период решетки: 2,870 А. Температура Дебая: 460 К. Для Fe характерен полиморфизм, он имеет 4 кристаллические модификации: 1) до 910°С сущ-ет α-Fe (феррит) с ОЦК решеткой; 2) в температурном интервале 768-910°С сущ-ет β-Fe, кот отличается от α-Fe только параметрами кристаллической решетки и магнитными св-вами; 3) в температурном интервале 910-1401°С сущ-ет γ-Fe (аустенит) с ГЦК решеткой; 4) выше 1401°С до температуры плавления устойчив δ-Fe с ОЦК решеткой.
36. Что такое мартенсит? Металлографическая структура мартенсита.
Мартенсит – пересыщенный упорядоченный твердый раствор углерода в α-Fe, имеющий тетрагональную структуру и в котором упорядоченное расположение атомов углерода. Мартенсит в стали не является стабильной фазой и стремится к распаду, особенно при нагреве.
Структура представляет собой узкие пластины, по форме приближающиеся к иглам и закономерно ориентированные по высокотемпературной фазе.
37. Твердые растворы. Дальний и ближний порядок.
Твёрдый раствор - твердые фазы, содержание компонентов в которых может изменяться в определенных пределах (в пределах области гомогенности).
По протяженности области гомогенности твердые растворы делятся на: растворы с неограниченной растворимостью компонентов, растворы с ограниченной растворимостью компонентов
П
о
типу расположения атомов растворяемого
элемента твердые растворы делятся на:
растворы замещения;
растворы внедрения;
растворы вычитания
Дальний порядок – это упорядоченность во взаимном расположении атомов или молекулв веществе (в жидком или твёрдом состоянии), которая (в отличие от ближнего порядка) повторяется на неограниченно больших расстояниях.
Дальним порядком в расположении молекул обладают, например, кристаллы.
Ближний порядок — это упорядоченность во взаимном расположении атомов или молекул в веществе, которая (в отличие от дальнего порядка) повторяется лишь на расстояниях, соизмеримых с расстояниями между атомами, то есть ближний порядок есть закономерность в расположении соседних атомов.
Ближним порядком в расположении молекул обладают, например, аморфные тела и жидкости.
38. Атомный механизм упорядочения.
Дислокации, испущенные источниками, накапливаются в кристалле и их число возрастает. Теория дислокаций объясняет упрочнение металла при деформации (наклеп) затруднением движения скользящих дислокаций в присутствии большого числа других дислокаций, принадлежащих той же или другой системе скольжения. Предложено большое число различных механизмов упрочнения. Большинство из них может быть сведено к упругому взаимодействию дислокаций. В связи с этим скалывающее напряжение τсд, вызывающее деформацию сдвига, может быть связано с плотностью дислокаций NД: τсд=Ab√NД.
Н
акопление
дислокаций при деформации вызывается
задержкой и закреплением у препятствий
дислокаций, испущенных источниками.
Препятствиями могут служить неподвижные
(сидячие) дислокации, скопления дислокаций,
границы блоков и зерен, группы вакансий.
Группировки дислокаций у препятствий
могут иметь разное строение; в качестве
модели такой группировки рассмотрим
скопления, изображенные на рис. 59, а. Эти
группы возникли в результате накопления
дислокаций, испущенных источником S,
у
препятствий Р
и
Q.
Нагромождение
дислокаций у препятствий вызывает их
упругое взаимодействие. Напряжения,
создаваемые таким скоплением,
пропорциональны числу дислокаций в
нем. Напряжение вокруг скоплений
дислокаций в основном определяет
упрочнение, так как они препятствуют
скольжению в действующей плоскости
и в смежных С ней плоскостях. Когда
упругие напряжения в области скопления
достигнут величины, сравнимой с
приложением скалывающим напряжением
т, источник перестанет действовать и
деформация прекратится. Для увеличения
степени деформации нужно снова вызвать
действие источника, для чего следует
увеличить скалывающее напряжение т.
Таким образом, деформация сопровождается
упрочнением металла. Оно затухает и
наступает насыщение,
Рис. 59. Скопление дислокаций у препятствия: а — схема; б — скопление дислокаций у
границы зерна, при котором упрочнение не возрастает с ростом деформации.
Насыщение упрочнения происходит при большом значении т, при котором головные дислокации скоплений прорываются сквозь препятствия Р и Q под действием дислокаций, вновь образуемых источником, но плотность и распределение их в скоплении не изменяются.
