Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
след мой.docx
Скачиваний:
4
Добавлен:
01.07.2025
Размер:
33.42 Кб
Скачать

2. Исследовательская часть. Метод расстановки приоритетов. Выбор оптимального оборудования с использованием метода расстановки приоритетов.

Цель исследования: с помощью научно обоснованного метода подобрать наиболее подходящее (оптимальное по заданным критериям) оборудование для одной из технологических операций (рейсмусовые станки на участке фрезерования).

2.1. Сущность метода принятия решений на основе метода расстановки приоритетов.

Сущность метода расстановки приоритетов заключается в попарном сравнении конкурирующих объектов (один либо лучше, либо хуже, либо равноценен по какому-то свойству) с дальнейшим переходом на количественные оценки и с использованием конкретных значений показателей свойств конкурентов, а при их отсутствии – экспертных оценок. Сравнение производят в матричной форме, что позволяет в дальнейшем при соответствующей математической обработке получить количественные значения приоритетов конкурирующих решений (объектов) по каждому свойству в отдельности и по комплексу показателей (признаков).

Допустим, в конкурсе участвуют n объектов (систем) = 1, n, характеризуемых m показателями = m. Каждый i-й объект по определённому j-му показателю имеет количественную оценку Xij.

Рассмотрим методику решения задачи.

1. Для качественного сравнения i-х объектов по j-м признакам строят матрицы бинарных отношений (табл. 2.1) с размером n × n (в одной матрице сравнивают i­-е объекты, i-й объект строки с i-м объектом столбца), а соотношение объектов выражают символами лучше >, равно =, хуже <. Таких матриц будет столько, сколько показателей принято для оценки объектов, т.е. m. Затем таким же образом сравнивают сами показатели по их приоритетности (весомости) в оценке объектов, для этого строят матрицу размером m × m.

табл. 2.1

Матрица бинарных отношений

i

1

2

3

n

1

=

<

>

>

2

>

=

>

>

3

<

<

=

<

.

.

.

.

.

.

.

.

.

.

n

<

<

>

=

2. Для перехода к количественным оценкам на основе имеющейся информации или с помощью балльной экспертной оценки определяют по каждому показателю, во сколько раз наилучший объект отличается от наихудшего

где Xij max – максимальная оценка i-го объекта по j-му показателю; Xij min – минимальная оценка i-го объекта по тому же признаку.

По найденному коэффициенту Kj определяют коэффициент ωj, а затем члены aij матриц смежности Aj, заменяющих матрицы бинарных отношений. Коэффициент ω равен

где βv – поправочный коэффициент, равный на первой итерации βv = 1.

Члены aij матриц смежности Aj = определяют следующим образом:

т.е. вместо символов лучше >, равно =, хуже < ставят соответствующее значение aij.

3. Для определения приоритета каждого i-го объекта по j-му показателю Pij и приоритета показателя Pj вводят понятие мощности критерия L-го порядка P(L), рассчитываемого построчно

Pij и Pj определяют из выражения

при условии

где E – задаваемая точность расчёта, принимаемая равной 0,01.

При достижении заданной точности определяют новое уточнённое значение K* по формуле

При выполнении условия (2.13) решение задачи окончено. В противном случае решение возвращается к пункту 2.

4. Комплексную оценку (приоритет) каждого объекта по всем j-м показателям определяют по формуле

Чем выше значение приоритета, тем эффективнее проектируемый объект (система).