- •Введение
- •Раздел vі: о. М. Бочарова;
- •Раздел vіі, vііі, іx: п. Г. Бердник.
- •Раздел 1.Начальные сведения
- •§ 1. Цифры и целые числа. Математические знаки
- •Упражнения
- •Контрольные вопросы
- •§ 2. Арифметические действия
- •1. Сложение: 2. Вычитание: 3. Умножение:4. Деление:
- •Порядок арифметических действий
- •Основные законы арифметических действий
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Признаки делимости чисел
- •Упражнения
- •Контрольные вопросы
- •§ 4. Делитель и кратное. Нод и нок
- •Простые и составные числа
- •Наибольший общий делитель (нод)
- •Наименьшее общее кратное (нок)
- •Упражнения
- •Контрольные вопросы
- •§ 5. Обыкновенные дроби
- •Упражнения
- •Контрольные вопросы
- •§ 6. Все действия с дробями
- •Основное свойство дроби
- •Сокращение дробей
- •Приведение дробей к общему (наименьшему) знаменателю
- •Сравнение дробей
- •Арифметические действия с дробями
- •Сложение и вычитание дробей
- •Умножение и деление дробей
- •Упражнения
- •Контрольные вопросы
- •§ 7. Десятичные дроби
- •Действия с десятичными дробями
- •Сложение и вычитание
- •Умножение
- •Деление
- •Упражнения
- •Контрольные вопросы
- •§ 8. Отношения. Пропорции. Проценты
- •Упражнения
- •Контрольные вопросы
- •Раздел 2.Множества. Рациональные числа § 1. Множества
- •Числовые множества
- •Подмножества
- •Действия над множествами
- •Упражнения
- •Контрольные вопросы
- •§ 2. Рациональные числа
- •Противоположные числа
- •Модуль числа
- •Свойства модуля
- •Действия с рациональными числами
- •1. Сравнение рациональных чисел
- •2.Сложение рациональных чисел
- •3. Вычитание рациональных чисел
- •4. Умножение и деление рациональных чисел
- •Алгебраические выражения
- •Упражнения
- •Контрольные вопросы
- •§ 3. Возведение в степень
- •Свойства степени с натуральным показателем
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •Раздел 3.Рациональные выражения
- •§ 1. Одночлены и многочлены
- •Действия над многочленами
- •1.Сложение одночленов и многочленов
- •2. Вычитание одночленов и многочленов
- •Формулы сокращенного умножения
- •Разложение многочленов на множители
- •I.Вынесение общего множителя за скобку
- •II. Группировка членов
- •III.Разложение многочленов на множители с помощью формул сокращенного умножения
- •Упражнения
- •Контрольные вопросы
- •§ 2. Алгебраические дроби
- •Свойства алгебраических дробей
- •Действия с алгебраическими дробями
- •1. Сложение и вычитание алгебраических дробей
- •2. Умножение алгебраических дробей
- •3. Деление алгебраических дробей
- •4. Все действия с алгебраическими дробями
- •Упражнения
- •Контрольные вопросы
- •Раздел 4.Корень. Степень с рациональным показателем
- •§ 1. Корень
- •Иррациональные числа
- •Свойства арифметического корня n– степени
- •Преобразование корней
- •Упражнения
- •Контрольные вопросы
- •§ 2. Подобные корни
- •Действия с корнями
- •1. Сложение и вычитание корней
- •2. Умножение и деление корней
- •3. Возведение корней в степень
- •4. Извлечение корня из корня
- •Упражнения
- •Контрольные вопросы
- •§ 3. Иррациональные выражения
- •Разложение иррациональных выражений на множители
- •Освобождение знаменателя дроби от иррациональности
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 4. Степень с рациональным показателем
- •Основные свойства степени с рациональным показателем
- •Упражнения
- •Контрольные вопросы
- •Раздел 5.Уравнения и системы уравнений первой степени
- •§ 1. Равенства. Тождества. Уравнения
- •Свойства равносильных уравнений
- •Контрольные вопросы
- •§ 2. Линейные уравнения
- •Линейные уравнения с модулем
- •Упражнения
- •Контрольные вопросы
- •§ 3. Системы линейных уравнений с двумя переменными Линейные уравнения с двумя переменными
- •Решение системы двух линейных уравнений с двумя переменными
- •Способ подстановки
- •Способ алгебраического сложения
- •Графический способ
- •Упражнения
- •Контрольные вопросы
- •§ 4. Решение системы двух линейных уравнений с помощью определителей
- •Исследование системы двух линейных уравнений с помощью определителей
- •Раздел 6. Квадратные уравнения и системы уравнений
- •§ 1. Квадратные уравнения
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 2. Теорема виета. Разложение квадратного трёхчлена на множители
- •Разложение квадратного трехчлена на множители
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Биквадратные уравнения и уравнения, приводимые к ним
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 4. Иррациональные уравнения
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Системы нелинейных уравнений с двумя переменными
- •Решение нелинейных систем
- •Метод подстановки
- •II. Метод алгебраического сложения
- •III. Решение системы нелинейных уравнений с двумя переменными с помощью теоремы Виета
- •IV. Решение системы уравнений, которые симметричны относительно х и у
- •V. Решение систем, которые содержат иррациональные выражения
- •Упражнения
- •Контрольные вопросы
- •Раздел 7.Функции
- •§ 1. Функция
- •Способы задания функций
- •Упражнения
- •Контрольные вопросы
- •§ 2. Свойства функции
- •Монотонность функции
- •Четность и нечетность функции
- •Интервалы знакопостоянства
- •Точки пересечения с осями координат
- •Асимптоты
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Линейная функция
- •Прямая пропорциональность
- •Упражнения
- •Контрольные вопросы
- •§ 4. Способы построения графиков функций
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Обратная пропорциональность
- •Упражнения
- •Контрольные вопросы
- •§ 6. Дробно-линейная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 7. Квадратичная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 8. Степенная функция
- •Упражнения
- •Контрольные вопросы
- •Раздел 8. Неравенства
- •§ 1. Числовые неравенства
- •Виды неравенств
- •Свойства числовых неравенств
- •Действия над числовыми неравенствами
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 2. Доказательство неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Неравенства с переменными, системы и совокупности неравенств
- •Свойства равносильных неравенств
- •Контрольные вопросы
- •§ 4. Решение линейных и квадратных неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Решение неравенств методом интервалов
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 6. Решение неравенств, которые содержат переменную под знаком модуля
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 7. Решение иррациональных неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •Раздел 9. Показательная и логарифмическая функции
- •§ 1. Показательная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 2. Показательные уравнения
- •Основные способы решения показательных уравнений
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Показательные неравенства
- •Основные способы решения показательных неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 4. Обратная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Логарифм
- •Свойства логарифмов
- •Теоремы о логарифме произведения, частного и степени
- •Формула перехода к новому основанию
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 6. Логарифмическая функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 7. Логарифмические уравнения
- •Основные способы решения логарифмических уравнений
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 8. Логарифмические неравенства
- •Основные способы решения логарифмических неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •Список литературы
§ 2. Теорема виета. Разложение квадратного трёхчлена на множители
Теорема Виета: сумма корней приведённого квадратного уравнения равна второму коэффициенту с противоположным знаком, а произведение корней равно свободному члену.
Доказательство: общий вид приведённого квадратного уравнения.
По формуле (1):
Найдем сумму корней этого уравнения:
.
Найдем произведение корней этого уравнения:
Получим
Теорема Виета верна и для уравнения общего вида:
,
.
С помощью теоремы Виета можно быстро решать элементарные квадратные уравнения.
Пример.
Решите уравнение:
.
Решение.
По теореме Виета:
и
.
Корнями уравнения могут быть делители
числа 6, это числа 1, 2, 3, 6. Очевидно, что
корни этого уравнения будут 2 и 3.
Ответ: {2, 3}.
По теореме Виета можно также составить квадратное уравнение, если мы знаем его корни.
Пример. Составьте квадратное уравнение, если его корни 5 и – 3.
Решение.
Пусть
,
,
тогда
,
.
Квадратное уравнение имеет вид .
Ответ: .
Разложение квадратного трехчлена на множители
Квадратный трехчлен – это многочлен вида ах2 + bх + с, где а ≠ 0.
Корнем многочлена с одной переменной называется значение переменной, при котором значение многочлена равно нулю.
Чтобы найти корень многочлена, необходимо этот многочлен приравнять к нулю и решить полученное уравнение.
Пример. Найдите корни многочленов:
а)
.
Решение. Решим уравнение: 2х– 3 = 0, 2х = 3, х =1,5.
1,5 – это корень двучлена.
б)
.
Решение.
Решим уравнение:
,
,
.
– 2; 0; 2 – это корни многочлена.
г)
.
Решение. Решим уравнение: х2– 5х+6 = 0 х = 2, х = 3.
2 и 3 – это корни трехчлена.
Пусть трехчлен
имеет
корни
и
.
Докажем, что этот трехчлен можно
разложить на множители так:
. (3)
Преобразуем правую часть:
.
Мы видим, что левая часть равенства (3) равна правой.
Итак,
Если трехчлен
имеет
только один корень, то его тоже можно
разложить на множители:
.
Слова и словосочетания: теоре́ма, соста́вить– составля́ть, квадра́тный трехчле́н, ко́рень многочле́на.
Упражнения с решениями
1. Решите уравнение: х2 − 5х − 6 = 0.
Решение. По теореме Виета х1∙х2 = − 6 и х1 + х2 = 5.
Делители числа 6 − это числа: 1, 2, 3 и 6.
Корнями уравнения будут – 1 и 6.
Ответ: {−1; 6}.
Разложите на множители трехчлен
.
Решение. Найдем корни трехчлена. Для этого решим уравнение:
,
,
,
.
Разложим многочлен на
множители:
.
3. Составьте
квадратное уравнение, если его корни:
=
5;
.
Решение. По теореме Виета – р = 5 + (− 6) = − 1 р = 1; q = 5∙( − 6) = − 30.
Составим уравнение:
.
Упражнения
Не решая уравнения, найдите сумму и произведение его корней:
1) 2х2 − 9х + 10 = 0; 4) 3х2 − 8х + 10 = 0;
2) 5х2 + 12х + 7 = 0; 5) 4у2 − 19 = 0;
3) х2 − 37х + 27 = 0; 6) х2 − 210х = 0.
Составьте квадратное уравнение по его корням:
1) 3 и 10; 3) 2−
и 2+
;
2) −7 и −4; 4) 5−3 и 5+3 .
Разложите на множители трехчлены:
1) 4х2 − 9х + 5; 4) х2−х−3;
2) 4b2 − 9b + 7; 5) 2у2−5у+8;
3) − 3у2 + 8у + 11; 6) 16а2 − 24а + 9.
4. Сократите дроби:
1)
;
2)
;
3)
;
4)
;
5)
;
6)
.
5. Составьте квадратное уравнение, корни которого в два раза больше корней уравнения .
6. Составьте
квадратное уравнение, корни которого
на единицу больше корней уравнения
.
7. Найдите
k для каждого уравнения, если
,
где
и
− корни уравнения:
1)
;
2)
;
3)
.
