- •Введение
- •Раздел vі: о. М. Бочарова;
- •Раздел vіі, vііі, іx: п. Г. Бердник.
- •Раздел 1.Начальные сведения
- •§ 1. Цифры и целые числа. Математические знаки
- •Упражнения
- •Контрольные вопросы
- •§ 2. Арифметические действия
- •1. Сложение: 2. Вычитание: 3. Умножение:4. Деление:
- •Порядок арифметических действий
- •Основные законы арифметических действий
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Признаки делимости чисел
- •Упражнения
- •Контрольные вопросы
- •§ 4. Делитель и кратное. Нод и нок
- •Простые и составные числа
- •Наибольший общий делитель (нод)
- •Наименьшее общее кратное (нок)
- •Упражнения
- •Контрольные вопросы
- •§ 5. Обыкновенные дроби
- •Упражнения
- •Контрольные вопросы
- •§ 6. Все действия с дробями
- •Основное свойство дроби
- •Сокращение дробей
- •Приведение дробей к общему (наименьшему) знаменателю
- •Сравнение дробей
- •Арифметические действия с дробями
- •Сложение и вычитание дробей
- •Умножение и деление дробей
- •Упражнения
- •Контрольные вопросы
- •§ 7. Десятичные дроби
- •Действия с десятичными дробями
- •Сложение и вычитание
- •Умножение
- •Деление
- •Упражнения
- •Контрольные вопросы
- •§ 8. Отношения. Пропорции. Проценты
- •Упражнения
- •Контрольные вопросы
- •Раздел 2.Множества. Рациональные числа § 1. Множества
- •Числовые множества
- •Подмножества
- •Действия над множествами
- •Упражнения
- •Контрольные вопросы
- •§ 2. Рациональные числа
- •Противоположные числа
- •Модуль числа
- •Свойства модуля
- •Действия с рациональными числами
- •1. Сравнение рациональных чисел
- •2.Сложение рациональных чисел
- •3. Вычитание рациональных чисел
- •4. Умножение и деление рациональных чисел
- •Алгебраические выражения
- •Упражнения
- •Контрольные вопросы
- •§ 3. Возведение в степень
- •Свойства степени с натуральным показателем
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •Раздел 3.Рациональные выражения
- •§ 1. Одночлены и многочлены
- •Действия над многочленами
- •1.Сложение одночленов и многочленов
- •2. Вычитание одночленов и многочленов
- •Формулы сокращенного умножения
- •Разложение многочленов на множители
- •I.Вынесение общего множителя за скобку
- •II. Группировка членов
- •III.Разложение многочленов на множители с помощью формул сокращенного умножения
- •Упражнения
- •Контрольные вопросы
- •§ 2. Алгебраические дроби
- •Свойства алгебраических дробей
- •Действия с алгебраическими дробями
- •1. Сложение и вычитание алгебраических дробей
- •2. Умножение алгебраических дробей
- •3. Деление алгебраических дробей
- •4. Все действия с алгебраическими дробями
- •Упражнения
- •Контрольные вопросы
- •Раздел 4.Корень. Степень с рациональным показателем
- •§ 1. Корень
- •Иррациональные числа
- •Свойства арифметического корня n– степени
- •Преобразование корней
- •Упражнения
- •Контрольные вопросы
- •§ 2. Подобные корни
- •Действия с корнями
- •1. Сложение и вычитание корней
- •2. Умножение и деление корней
- •3. Возведение корней в степень
- •4. Извлечение корня из корня
- •Упражнения
- •Контрольные вопросы
- •§ 3. Иррациональные выражения
- •Разложение иррациональных выражений на множители
- •Освобождение знаменателя дроби от иррациональности
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 4. Степень с рациональным показателем
- •Основные свойства степени с рациональным показателем
- •Упражнения
- •Контрольные вопросы
- •Раздел 5.Уравнения и системы уравнений первой степени
- •§ 1. Равенства. Тождества. Уравнения
- •Свойства равносильных уравнений
- •Контрольные вопросы
- •§ 2. Линейные уравнения
- •Линейные уравнения с модулем
- •Упражнения
- •Контрольные вопросы
- •§ 3. Системы линейных уравнений с двумя переменными Линейные уравнения с двумя переменными
- •Решение системы двух линейных уравнений с двумя переменными
- •Способ подстановки
- •Способ алгебраического сложения
- •Графический способ
- •Упражнения
- •Контрольные вопросы
- •§ 4. Решение системы двух линейных уравнений с помощью определителей
- •Исследование системы двух линейных уравнений с помощью определителей
- •Раздел 6. Квадратные уравнения и системы уравнений
- •§ 1. Квадратные уравнения
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 2. Теорема виета. Разложение квадратного трёхчлена на множители
- •Разложение квадратного трехчлена на множители
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Биквадратные уравнения и уравнения, приводимые к ним
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 4. Иррациональные уравнения
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Системы нелинейных уравнений с двумя переменными
- •Решение нелинейных систем
- •Метод подстановки
- •II. Метод алгебраического сложения
- •III. Решение системы нелинейных уравнений с двумя переменными с помощью теоремы Виета
- •IV. Решение системы уравнений, которые симметричны относительно х и у
- •V. Решение систем, которые содержат иррациональные выражения
- •Упражнения
- •Контрольные вопросы
- •Раздел 7.Функции
- •§ 1. Функция
- •Способы задания функций
- •Упражнения
- •Контрольные вопросы
- •§ 2. Свойства функции
- •Монотонность функции
- •Четность и нечетность функции
- •Интервалы знакопостоянства
- •Точки пересечения с осями координат
- •Асимптоты
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Линейная функция
- •Прямая пропорциональность
- •Упражнения
- •Контрольные вопросы
- •§ 4. Способы построения графиков функций
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Обратная пропорциональность
- •Упражнения
- •Контрольные вопросы
- •§ 6. Дробно-линейная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 7. Квадратичная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 8. Степенная функция
- •Упражнения
- •Контрольные вопросы
- •Раздел 8. Неравенства
- •§ 1. Числовые неравенства
- •Виды неравенств
- •Свойства числовых неравенств
- •Действия над числовыми неравенствами
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 2. Доказательство неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Неравенства с переменными, системы и совокупности неравенств
- •Свойства равносильных неравенств
- •Контрольные вопросы
- •§ 4. Решение линейных и квадратных неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Решение неравенств методом интервалов
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 6. Решение неравенств, которые содержат переменную под знаком модуля
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 7. Решение иррациональных неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •Раздел 9. Показательная и логарифмическая функции
- •§ 1. Показательная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 2. Показательные уравнения
- •Основные способы решения показательных уравнений
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 3. Показательные неравенства
- •Основные способы решения показательных неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 4. Обратная функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 5. Логарифм
- •Свойства логарифмов
- •Теоремы о логарифме произведения, частного и степени
- •Формула перехода к новому основанию
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 6. Логарифмическая функция
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 7. Логарифмические уравнения
- •Основные способы решения логарифмических уравнений
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •§ 8. Логарифмические неравенства
- •Основные способы решения логарифмических неравенств
- •Упражнения с решениями
- •Упражнения
- •Контрольные вопросы
- •Список литературы
Упражнения с решениями
Запишите выражение без отрицательного показателя:
1)
2)
3)
4)
5)
|
6)
7)
8)
|
2. Запишите выражение с отрицательным показателем:
1)
; 2)
; 3)
;
4)
;
5)
;
6)
;
7)
; 8)
.
3. Умножьте и упростите:
1)
2)
;
3)
или
.
4. Разделите и упростите:
1)
; 2)
или
;
3)
или
;
4)
;
5)
.
5. Упростите:
1)
; 2)
или
;
3)
или
;
4)
;
5)
;
6)
.
Упражнения
А
1. Вычислите:
1)
; 2)
; 3)
; 4)
;
5)
;
6)
; 7)
; 8)
;
9)
; 10)
.
2. Умножьте и упростите:
1)
;
2)
;
3)
; 4)
;
5)
;6)
;
7)
;
8)
;
9)
;
10)
;
11)
;
12)
;
13)
.
3. Разделите и упростите:
1)
; 2)
; 3)
; 4)
;
5)
; 6)
; 7)
; 8)
;
9)
; 10)
; 11)
; 12)
;
13)
; 14)
; 15)
; 16)
.
4. Упростите:
1)
; 2)
; 3)
; 4)
;
5)
;
6)
; 7)
;
8)
;
9)
;
10)
;
11)
;
12)
;
13)
;
14)
;
15)
;
16)
.
Б
1. Вычислите
,
если x = 1 и y = – 2.
2. Упростите:
1)
2) 3) |
4)
5) |
Ответы: А. 2.
9)
;
11)
;
13)
.
3. 7)
;
9)
или
;
11)
;
13)
;
15)
.
4. 1)
;
3)
;
5)
;
7)
;
9)
;
11)
;
13)
;
15)
;
17)
.
Б. 1. 27.
2. 5)
.
Контрольные вопросы
1. Что такое возведение в степень?
2. Как умножить степени с одинаковыми основаниями?
3. Как разделить степени с одинаковыми основаниями?
4. Как возвести степень в степень?
5. Как возвести в степень произведение?
6. Как возвести в степень дробь?
7. Чему равно число с показателем ноль?
8. Чему равно число с отрицательным показателем?
Раздел 3.Рациональные выражения
§ 1. Одночлены и многочлены
Одночлен – это алгебраическое выражение, в котором есть только действия умножения и возведения в степень.
Например:
;
;
.
Коэффициент одночлена – это числовой множитель одночлена.
Например, в одночлене
10
– это коэффициент;
–
это буквенное выражение.
Многочлен – это алгебраическая сумма нескольких одночленов.
Члены многочлена – это одночлены, из которых состоит многочлен.
Например:
Например: в многочлене
;
и
это члены многочлена.
Подобные члены – это члены многочлена, которые имеют одинаковые буквенные выражения.
Так, в многочлене
члены
и
подобные.
Подобные члены можно заменить их суммой. Эта операция называется приведением подобных членов.
Приведем подобные члены в многочлене
.
Члены
и
взаимно уничтожаются.
Действия над многочленами
1.Сложение одночленов и многочленов
Чтобы сложить одночлены, необходимо написать их последовательно с их знаками и привести подобные члены.
1) Выполним сложение одночленов:
;
;
;
;
.
Получим
.
Знаки сложения можно не
писать:
.
Приведем подобные члены,
получим
.
Чтобы сложить многочлены, необходимо написать последовательно их члены с их знаками и привести подобные члены.
2) Выполним сложение многочленов:
;
;
;
.
Получим
.
Знаки сложения можно не
писать:
.
Приведем подобные члены,
получим
.

;
;
;
;
;
;
;
.
;
;
;
.