- •Изоляция и перенапряжение
- •Введение
- •Раздел 1. Разряд в газах и общие характеристики внешней изоляции
- •Глава 1. Общая характеристика внешней изоляции электроустановок. Основные виды электрического разряда в газах
- •Глава 2. Физические процессы при ионизации в газе §2.1. Возбуждение и ионизация атомов и молекул. Лавина электронов. Несамостоятельный и самостоятельный разряды. Плазма
- •§2.2. Переход от лавинной формы самостоятельного разряда к искровому разряду в малых искровых промежутках с равномерным полем. Образование стримеров
- •§2.3. Самостоятельный разряд в неравномерном поле. Лавинная корона
- •§2.4. Стримерная корона
- •§2.5. Переход стримера в искровой разряд в промежутках с неравномерным полем
- •§2.6. Переход стримера в искровой разряд в длинных воздушных промежутках. Лидерная стадия разряда
- •§2.7. Главный разряд в длинных промежутках
- •§2.8. Искра
- •§2.9. Длинная дуга в воздухе
- •§2.10. Последовательность стадий газового разряда
- •Глава 3. Коронный разряд на линиях электропередач. Корона на проводах при постоянном напряжении. Корона на проводах при переменном напряжении. Потери на корону. Методы уменьшения потерь на корону
- •§3.1. Коронный разряд на линиях электропередач
- •§3.2. Корона на проводах при постоянном напряжении
- •§3.3. Корона на проводах при переменном напряжении
- •Раздел 2. Разряды в жидких и твердых диэлектриках. Электрические характеристики внутренней изоляции электроустановок
- •Глава 1. Основные особенности изоляционных жидкостей.
- •Механизм пробоя жидких диэлектриков
- •§1.1. Основные особенности минерального масла как диэлектрика
- •§1.2. Синтетические изоляционные жидкости. Чистые углеводороды
- •§1.3. Подготовка изоляционных жидкостей
- •§1.4. Механизм пробоя в жидких диэлектриках
- •Глава 2. Маслобарьерная изоляция. Примеры применения маслобарьерной изоляции: силовые трансформаторы, вводы
- •Глава 3. Твердая изоляция. Тепловой, электрический и ионизационный пробой твердой изоляции
- •§3.1. Твердая изоляция
- •§3.2. Виды твердых изоляционных материалов
- •3.2.1. Керамические изоляционные материалы
- •3.2.2. Стекла
- •3.2.3. Слюда
- •3.2.4. Высокомолекулярные полимерные изоляционные материалы
- •3.2.5. Эластомеры
- •§3.3. Тепловой, электрический и ионизационный пробой твердой изоляции
- •3.3.1. Тепловое старение твердой изоляции
- •3.3.2. Тепловой пробой твердой изоляции
- •3.3.3. Электрический пробой твердой изоляции
- •3.3.4. Ионизационный пробой твердой изоляции
- •Глава 4. Газовая и вакуумная изоляция
- •Раздел 3. Испытательные установки и измерения высоких напряжений
- •Глава 1. Испытательные установки высокого напряжения
- •§1.1. Испытательные трансформаторы
- •§1.2. Генераторы импульсных напряжений и токов
- •1.2.1. Генераторы импульсных напряжений
- •1.2.2. Генераторы импульсных токов
- •Глава 2. Измерения на высоком напряжении. Электростатические
- •Киловольтметры. Измерение максимальных значений напряжения
- •С помощью шаровых разрядников. Измерение напряжения
- •С помощью делителей
- •§2.1. Электростатические вольтметры
- •§2.2. Измерительные разрядники
- •§2.3. Делители для измерений высоких постоянных, переменных и импульсных напряжений
- •Раздел 4. Линейная и станционная изоляция. Профилактика изоляции установок высокого напряжения
- •Глава 1. Изоляторы высокого напряжения. Линейные изоляторы,
- •§1.1. Изоляторы высокого напряжения
- •§1.2. Линейные изоляторы
- •§1.3. Станционно-аппаратные изоляторы
- •Глава 2. Изоляция силовых электроустановок напряжением выше 1000 в
- •§2.1.Общие положения
- •§2.2. Изоляция вращающихся электрических машин
- •§2.3. Изоляция силовых трансформаторов
- •§2.4. Изоляция кабелей
- •Глава 3. Профилактика изоляции. Основные методы профилактики изоляции. Профилактика изоляции силовых трансформаторов, линейной изоляции, вращающихся машин, кабелей
- •§3.1. Профилактика изоляции. Основные методы профилактики изоляции
- •3.1.1. Контроль изоляции по tgδ
- •3.1.2. Методы контроля с использованием явления абсорбции
- •3.1.3. Испытание повышенным напряжением
- •3.1.4. Контроль изоляции по распределению напряжения
- •3.1.5. Обнаружение ионизационных процессов в изоляции
- •§3.2. Профилактика изоляции силовых трансформаторов
- •§3.3. Профилактика линейной изоляции
- •§3.4. Профилактика изоляции вращающихся машин
- •§3.5. Профилактика изоляции кабелей
- •Раздел 5. Грозовые перенапряжения и защита от них
- •Глава 1. Молния как источник грозовых перенапряжений. Параметры молнии. Воздействие тока молнии
- •§1.1. Молния как источник грозовых перенапряжений
- •§1.2. Основные параметры молнии
- •§1.3. Воздействие молнии
- •Глава 2. Защита от прямых ударов молнии. Зоны защиты стержневых молниеотводов
- •§2.1. Защита от прямых ударов молнии
- •§2.2. Зоны защиты молниеотводов
- •§2.3. Конструктивное выполнение молниеотводов
- •§3.1. Защита линии электропередачи от молнии
- •§3.2. Применение тросов для защиты линии электропередачи
- •§3.3. Зоны защиты тросовых молниеотводов
- •§3.4. Трубчатые разрядники и их применение для защиты линий
- •§3.5. Рекомендуемые способы грозозащиты линий
- •Защита вл от прямых ударов молнии на подходах к ру и пс
- •Глава 4. Защита оборудования подстанций от набегающих с линии
- •Импульсов грозовых перенапряжений. Вентильный разрядник
- •Как основной аппарат защиты подстанционного оборудования
- •От набегающих импульсов. Нелинейные ограничители перенапряжений
- •§4.1. Защита оборудования подстанций от набегающих с линии
- •Импульсов грозовых перенапряжений
- •§4.2. Вентильный разрядник как основной аппарат защиты подстанционного оборудования от набегающих импульсов
- •§4.3. Нелинейные ограничители перенапряжений
- •Глава 5. Молниезащита зданий и сооружений. Молниезащита зданий и сооружений I категории, II категории, III категории
- •§5.1. Молниезащита зданий и сооружений
- •§5.2. Молниезащита зданий и сооружений I категории,
- •II категории, III категории
- •5.2.1. Молниезащита зданий и сооружений I категории
- •5.2.2. Молниезащита II категории
- •5.2.3. Молниезащита III категории
- •Раздел 6 Контрольные вопросы и задачи
- •9. Методика получения вольт-секундных характеристик изоляции и их практическое значение. Минимальное импульсное и 50%-ное разрядное напряжение.
- •Заданные параметры линии
- •Вид испытания электрооборудования
§3.2. Применение тросов для защиты линии электропередачи
На линиях с металлическими и железобетонными опорами применяется тросовая защита. В отсутствие тросов защитный уровень этих линий очень низкий и отключение линий вследствие грозовых поражений происходит очень часто. Многолетний опыт эксплуатации линии на металлических опорах показал, что хорошо заземленные тросы обеспечивают малое удельное число отключений линий. Подвеска тросов незначительно повышает стоимость линии.
На линиях 110 кВ и ниже с деревянными опорами подвеска тросов требует применения опор большой длины, что приводит к значительному удорожанию стоимости линии и утяжелению конструкции опор. При этом линии на деревянных опорах без троса обладают удовлетворительными грозозащитными характеристиками, а стоимость их значительно ниже стоимости линий на металлических и железобетонных опорах. Поэтому на линиях с деревянными опорами тросовая защита используется только на участках, примыкающих к подстанциям, где по условиям защиты подстанционной изоляции необходимо предотвратить прямой удар молнии в провода.
§3.3. Зоны защиты тросовых молниеотводов
Вертикальное сечение зоны защиты тросового молниеотвода строится так же, как для стержневого, но с другими числовыми коэффициентами. Упрощенное построение зоны защиты одиночного троса приведено на рис. 5.5.
Внешняя часть зоны защиты двух параллельных тросовых молниеотводов, расположенных на расстоянии а, определяется так же, как и для одиночного троса. Внутренняя часть ограничена поверхностью, которая в сечении плоскостью, перпендикулярной тросам, дает дугу окружности; эта дуга проходит через три точки: два троса и точку посередине между ними на высоте
ho=h-a/4p. (5.6)
Условие защиты среднего провода при горизонтальном расположении проводов и двух тросах практически всегда осуществляется со значительным запасом:
a4p(h-hx)=4p(hтр-hпр). (5.7)
При рассмотрении условий защиты внешних проводов (или любого провода при одном тросе) обычно пользуются понятием не зоны защиты, а угла защиты α. Для защитной зоны на высоте более 0,7 h (рис. 5.5) α= arctg 0,6 = 31°.
Рис. 5.5. Зона защиты тросового молниеотвода
Наличие защитных тросов не гарантирует 100%-ной надежности защиты; всегда существует некоторая вероятность поражения провода — «прорыва молнии мимо тросовой защиты». В отличие от подстанций, территории которых поражаются молнией 1 раз в несколько лет, линии подвергаются прямым ударам десятки раз за грозовой сезон. Поэтому, даже весьма малая вероятность прорыва молнии имеет существенное значение. Эта вероятность подсчитывается по эмпирической формуле
,
(5.8)
где hoп — высота опоры.
При α = 30° и hoп =16 м Pα ≈0,002, а при hoп= 36 м Pα =0,01. Для снижения вероятности прорыва молнии уменьшают защитные углы на высоких опорах путем раздвигания тросостоек к концам траверсы; условия защиты среднего провода при этом обычно сохраняются.
