- •1.Цель и задачи курса теории механизмов и машин
- •2.Машины и их классификация
- •3. Машинный агрегат
- •4. Строение механизмов. Основные определения
- •7. Примеры механизмов с низшими парами
- •8. Примеры механизмов с высшими парами
- •9. Структурные формулы механизмов
- •10. Механизмы с избыточными связями
- •11. Механизмы с «лишними» степенями свободы
- •12. Плоские группы Ассура
- •13. Структурный анализ плоских рычажных механизмов
- •15. Планы положений плоских рычажных механизмов
- •16. Определение функции положения механизма
- •17. Передаточные функции механизма
- •18. Планы скоростей плоских рычажных механизмов
- •19.Планы ускорений плоских рычажных механизмов
- •20. Кинематический анализ механизмов
- •21. Кинематический анализ зубчатых механизмов.
- •22. Динамика машин и механизмов. Основные определения
- •23. Силы, действующие в механизмах, и их характеристики
- •24.Динамическая модель машинного агрегата
- •25. Приведение сил и масс. Графический способ
- •13. Приведение сил. Графический способ.
- •14. Приведение масс. Графический способ.
- •26. Уравнение движения механизма
- •27.Силы, действующие в кинематических парах плоского механизма при отсутствии трения
- •28. Силовой расчет типовых механизмов.
- •29,Кинетостатический силовой расчет типовых механизмов
- •32. Потери энергии на трение. Механический коэффициент полезного действия.
- •33 Синтез рычажных механизмов
- •Второе уравнение получим из соотношения:
- •34Синтез кривошипно-коромыслового механизма по коэффициенту изменения средней скорости коромысла.
- •35. Манипуляторы
- •36. Статическое уравновешивание механизмов
- •37Условия существования зубчатой передачи.
- •38. Основная теорема плоского зацепления
- •39.Графические методы синтеза сопряженных профилей
- •40. Зубчатые передачи
- •41. Эвольвента окружности и ее свойства.
- •42. Исходный производящий контур рейки.
- •43Основные параметры эвольвентных цилиндрических передач
- •44Планетарная зубчатая передача.
35. Манипуляторы
Манипулятор - совокупность пространственного рычажного механизма и системы приводов, осуществляющая под управлением программируемого автоматического устройства или человека-оператора действия (манипуляции), аналогичные действиям руки человека.
Формула строения - математическая запись структурной схемы манипулятора, содержащая информацию о числе его подвижностей, виде кинематических пар и их ориентации относительно осей базовой системы координат (системы, связанной с неподвижным звеном).
Движения, которые обеспечиваются манипулятором, делятся на:
-глобальные (для роботов с подвижным основанием) - движения стойки манипулятора, которые существенно превышают размеры механизма;
- региональные (транспортные) - движения, обеспечиваемые первыми тремя звеньями манипулятора или его "рукой", величина которых сопоставима с размерами механизма;
- локальные (ориентирующие) - движения, обеспечиваемые звеньями манипулятора, которые образуют его "кисть", величина которых значительно меньше размеров механизма.
В соответствии с этой классификацией движений, в манипуляторе можно выделить два участка кинематической цепи с различными функциями: механизм руки и механизм кисти. Под "рукой" понимают ту часть манипулятора, которая обеспечивает перемещение центра захвата - точки М (региональные движения захвата); под "кистью" - те звенья и пары, которые обеспечивают ориентацию захвата (локальные движения захвата).
Рассмотрим структурную схему антропоморфного манипулятора, то есть схему которая в первом приближении соответствует механизму руки человека (рис.1)
Этот механизм состоит из трех подвижных звеньев и трех кинематических пар: двух трехподвижных сферических А3сф и С3сф и одной одноподвижной вращательной В1в.
Рабочее пространство манипулятора - часть пространства, ограниченная поверхностями огибающими к множеству возможных положений его звеньев.
Зона обслуживания манипулятора - часть пространства соответствующая множеству возможных положений центра схвата манипулятора. Зона обслуживания является важной характеристикой манипулятора. Она определяется структурой и системой координат руки манипулятора, а также конструктивными ограничениями наложенными относительные перемещения звеньев в КП.
Подвижность манипулятора W - число независимых обобщенных координат однозначно определяющее положение захвата в пространстве:
W=6*n
ли для незамкнутых кинематических цепей:
W=
Маневренность манипулятора М - подвижность манипулятора при зафиксированном (неподвижном) захвате: M=W-6
36. Статическое уравновешивание механизмов
= Цели уравновешивания и балансировки
При движении звеньев с переменными скоростями (с ускорением) возникают силы инерции и их моменты, которые принято называть динамическими нагрузками. Их возникновение приводит к вибрации и шуму. Причинами возникновения вибраций могут быть периодические изменения сил (силовое возмущение), перемешений (кинематическое возмущение) или инерционных характеристик (параметрическое возмущение). Вибрацией (от лат. vibratio - колебание) называют механические колебания в машинах или механизмах. Колебание - движение или изменение состояния, обладающие той или иной степенью повторяемости или периодичностью. Если источник возникновения вибраций определяется внутренними свойствами машины или механизма, то говорят о его виброактивности. Чтобы вибрации механизма не распространялись на окружающие его системы или чтобы защитить механизм от вибраций, воздействующих на него со стороны внешних систем, применяются различные методы виброзащиты. Различают внешнюю и внутреннюю виброактивность. Под внутренней виброактивностью понимают колебания возникающие внутри механизма или машины, которые происходят по его подвижностям или обобщенным координатам. Эти колебания не оказыват непосредственного влияния на окрущающую среду. При внешней виброактивности изменение положения механизма приводит к изменению реакций в опорах (т.е. связях механизма с окружающей средой) и непосредственному вибрационному воздействию на связанные с ним системы. Одна и основных причин внешней виброактивности - неуравновешенность его звеньев и механизма в целом, которое устраняется уравновешиванием звеньев при проектировании механизма. Это достигается соответствующим подбором масс и моментов инерции.
Неуравновешенным будем называть такой механизм (или его звено), в котором при движении центр масс механизма (или звена) движется с ускорением. Так как ускоренное движение системы возникает только в случае, если равнодействующая внешних силовых воздействий не равна нулю. Согласно принципу Д’Аламбера, для уравновешивания внешних сил к системе добавляются расчетные силы - силы и моменты сил инерции. Поэтому уравновешенным будем считать механизм, в котором главные вектора и моменты сил инерции равны нулю, а неуравновешенным механизм, в котором эти силы неравны нулю.
Для устранения малой неуравновешенности, возникающей после изготовления звеньев и их монтажа из-за несоблюдения размеров в процессе изготовления, неточности сборки, неоднородности материала, звенья балансируют.
Условия уравновешенности ротора
Деталь, вращающаяся в опорах, называется ротором. В связи с появлением быстроходных машин возникла проблема уравновешивания быстровращающихся деталей. Так, например, скорость некоторых турбин, валов гироскопов, суперцентрифуг достигает 3-50 тысяч об/мин и малейшее смещение центра масс с геометрической оси вращения вызывает появление больших сил инерции, т.е. вибрационных явлений в машине и фундаменте.
При вращении
какой-либо i-й массы m на
нее действует сила инерции, которую
можно разложить на нормальную
и
тангенциальную
составляющие
(рис. 6.1).
Величины этих сил можно вычислить по формулам
