- •1. Цитологические основы полового и бесполого размножения. Генетика пола.
- •2. Закономерности наследования признаков, установленные Менделем. Тетрадный анализ.
- •5. Доказательства роли днк как материального носителя наследственности. Открытие Уотсоном и Криком трёхмерной структуры днк, объясняющей её свойства как генетического материала.
- •4.Типы взаимодействия генов. Понятие об экспрессивности и пенетрантности.
- •13. Механизмы рекомбинации у бактерий (трансформация, конъюгация и трансдукция).
- •6.Транскрипция. Трансляция. Альтернативный сплайсинг. Основные характеристики генетического кода. Рамка считывания.
- •7. Понятие о модификационной и генотипической изменчивости (комбинативной и мутационной). Типы мутаций. Значение этих форм изменчивости в эволюции и селекции. Эпигенетическая изменчивость.
- •9. Нехромосомная наследственность. Плазмон и плазмогены. Цитоплазматическая мужская стерильность. Гибридный дисгенез. Предетерминация цитоплазмы
- •10. Задачи и методы и селекции. Понятие о сорте. Типы сортов. Аллополиплоидия как способ преодоления бесплодия отдаленных гибридов
- •Сортовые типы
- •11. Генная инженерия. Особенности трансформации у про- и эукариот. Банки генов. Саузерн-блоттинг как метод поиска нужных генов.
- •Метод - Рестрикция эндонуклеазами рестрикции для разрезания высокомолекулярной днк на более мелкие фрагменты.
- •Результаты
- •Применение
- •12. Геном человека и методы его изучения. Принципы построения цитологических, генетических и физических карт хромосом. «Прогулка по хромосоме».
- •14. Особенности репликации днк у про – и эукариот. Доказательства полуконсервативного способа репликации днк.
- •16. Естественный и искусственный отбор. Основные формы и значения в эволюции и селекции.
- •17. Генотип и фенотип. Норма реакции. Генокопии и фенокопии.
- •18. Генетическая теория рака. Ретротранспозоны. Понятие об обратной транскрипции.
- •19. Регуляция действия генов у про- и эукариот.
- •20.Молекулярные маркеры днк (пдрф, rapd, ssr). Микро- и минисателлиты. Фингерпринтинг как метод идентификации личности.
- •Термин "геномика" появился только в 1985 году и относится к науке, занимающейся картированием и секвенированием геномов.
- •23.Кариотип человека в норме и его аномалии, приводящие к хромосомным болезням.
- •Проявления синдрома
- •Синдром Пата́у (трисомия 13)
- •24. Популяция как элементарная единица эволюции. Генетическая структура популяций.
- •25. Понятие о биологическом виде (критерии). Основные способы видообразования.
- •19. Механизмы окислительного фосфорилирования.
- •27. Биохимические пути ассимиляции углекислого газа растениями с3 и с4 – типа.
- •28.Образование первичных аминокислот в растениях
- •29. Роль фитохромной системы в регуляции процесса цветения у растений.
- •30. Трансформация световой энергии при фотосинтезе. Регуляция процесса.
- •31. Общая характеристика простейших. Важнейшие особенности основных типов и классов. Разнообразие образа жизни и экологических адаптаций одноклеточных животных. Их роль в природе и для человека.
- •32. Основные гипотезы происхождения одноклеточных – сукцессивная и эндосимбиотическая, их достоинства и противоречия. Филогенетические взаимоотношения основных типов простейших.
- •33. Основные теории происхождения многоклеточных животных. Разнообразие фагоцителообразных предков многоклеточных. Направления, этапы и результаты их эволюции.
- •5 Типов клеток:
- •1. Подтип Жабродыщащие (Branchiata)
- •40. Ракообразные как первичноводные членистоногие, сохранившие комплекс плезиоморфных черт в строении и физиологии. Классификация, разнообразие, экологические адаптации, роль в природе и для человека.
- •43. Сравнительная характеристика пищеварительной системы в различных типах беспозвоночных. Основные направления ее эволюции
- •44. Основные направления эволюции нервной системы и органов чувств у беспозвоночных животных.
- •45.Общая характеристика паукообразных, их роль в природе. Класс Паукообразные
9. Нехромосомная наследственность. Плазмон и плазмогены. Цитоплазматическая мужская стерильность. Гибридный дисгенез. Предетерминация цитоплазмы
Цитоплазматическая = нехромосомная наследственность. Наследование признаков и свойств организма, детерминированных элементами цитоплазмы и ее органоидами. Плазмон – совокупность генов, расположенных вне ядра, то есть геномы митохондрий и пластидов. Плазмогены - внеядерные гены = гены внехромосомной ДНК. Внехромосомная ДНК может входить в состав пластид, мтх-й, плазмид в клетках паразитов и симбионтов. Плазмиды – двуцепочечные, кольцевые молекулы ДНК прокариот; способны к автономной редупликации. У растений пластиды имеют линейную форму .Существуют бактерицидные факторы: а)Соl- факторы – гены особых бактерий - колищков, убивают бактерий не имеющих таких факторов, обуславливающие устойчивость бактерий к колищ. Есть плазмиды, которые дают устойчивость к тяжелым Ме, УФ.
Цитоплазматическая стерильность (ЦМС) – не способность к образованию пыльцы (кукуруза, лук, сахарная свекла). Наследование по материнскому типу. ЦМС имеет значение для кукурузы. При опылении цветков с ЦМС пыльцой – потомство имеет стерильную пыльцу, в цитоплазме материнских растений есть детерминанта ЦМС.
Мобильные генетические элементы (МГЭ) представляют дискретные сегменты ДНК,
которые могут перемещаться из одного местоположения в другое внутри хромосом
или между ними. На данный момент мобильные генетические элементы обнаружены в геномах практически всех изученных организмов. Геном Drosophila melanogaster содержит около 50-ти различных семейств мобильных генетических элементов, которые вместе составляют 10-15 % ДНК этого вида.
Некоторые МГЭ дрозофилы способны активироваться в особых межлинейных
скрещиваниях и вызывать совокупность генетических нарушений известных как синдром гибридного дисгенеза (СГД). Эти нарушения включают повышенную частоту мутаций, хромосомных аберраций и рекомбинаций, температуро-зависимую стерильность.
3 независимые системы гибридного дисгенеза: обуловлены активностью МГЭ I, P и hobo.
P-M система гибридного дисгенеза была открыта в середине 70-х годов. За возникновение отвечает МГЭ P.
Полноразмерный P-элемент имеет длину 2907 п.н. и характеризуется наличием терминальных инвертированных повторов размером 31 п.н. и субтерминальными инвертированными повторами размером 11 п.н., которые необходимы для его перемещения.
Известно два типа регуляции активности P-элемента: 1й ограничивает активность P-элемента только клетками зародышевой линии, 2й регулирует активность P-элемента в дисгенных скрещиваниях.
Механизм регуляции транспозиций P-элемента в дисгенных скрещиваниях еще не понят полностью. Высокий уровень регуляции перемещений P-элемента предполагает высокую чувствительность P-M системы гибридного дисгенеза к действию ДНК-повреждающих факторов и к нарушениям в процессах репарации. Облучение влияет на эффекты транспозиций P-элемента в условиях ГД, что повышает выход рецессивных и доминантных летальных мутаций.
Следующая система ГД связана с активностью hobo-элемента. Hobo-элемент перемещается через образование ДНК-посредника и принадлежит к семейству hobo-Ac-Tam3 (hAT). Полный hobo-элемент имеет длину 2959 п.н., несет два инвертированных концевых повтора по 12 п.н. и образует дупликацию в сайте инсерции размером 8 п.н.
Транспозиции hobo-элемента в H-E системе гибридного дисгенеза специфичны для клеток зародышевого пути, хотя может наблюдаться слабая активность hobo в соматических тканях эмбрионов. Активность hobo ограничена зародышевыми клетками из-за отсутствия транспозазы в соматических тканях. Однако, в отличие от P-элемента, тканеспецифическая транспозиция hobo регулируется выработкой транспозазы на уровне
транскрипции.
I-R система гибридного дисгенеза обусловлена активностью I-элемента, который относится к классу ретропозонов или LINE-подобных элементов. Полноразмерный I-элемент имеет длину 5371 п.н. Перемещение I-элемента происходит через образование
РНК-посредника с использованием обратной транспозазы, которая кодируется самим
элементом.
Дисгенные нарушения в рассмотренных системах гибридного дисгенеза в основном обусловлены транспозициями и эксцизиями мобильных элементов в развивающихся зародышевых клетках. Высокая частота хромосомных перестроек и рекомбинации у самцов происходят преимущественно в сайтах инсерции МГЭ. Повышенный уровень мутаций происходит от инсерционных мутаций и других индуцированных транспозициями МГЭ изменений в геноме.
Наследование при предетерминации цитоплазмы
Предетерминацией называется предопределение свойств организмов в последующих поколениях. В ряде случаев наследование признаков связано с особенностями цитоплазмы, возникающими в процессе индивидуального развития организма либо под влиянием факторов внешней среды (онтогенетическая или фенотипическая предетерминация), либо под влиянием генотипа (генотипическая предетерминация).
Онтогенетическая предетерминация. В этом случае наследование некоторых признаков по материнской линии обусловлено изменениями в цитоплазме, возникающими и ней под влиянием определенных внешних факторов. Обычно такие изменения нестойки и через несколько поколений постепенно исчезают, возвращаясь к исходному типу. Генотипическая предетерминация цитоплазмы происходит под влиянием генотипа материнского организма. Яркий пример – наследование направления завитка раковины у пресноводных гермафродитных моллюсков Limnea. Большинство из них – перекрестно оплодотворяющиеся формы, но некоторые из них способны к самооплодотворению. У этих моллюсков встречаются два типа закручивания раковины: против часовой стрелки (левозакрученные) и по ходу часовой стрелки (правозакрученные).
Рассмотренный тип наследования и является в собственном смысле материнским. Направление завитка раковины определяется характером спирального дробления оплодотворенного яйца, то есть расположением бластомеров по спирали вправо или влево, что, в свою очередь, зависит от ориентации веретена при втором делении дробления.
В данном случае свойства цитоплазмы детерминированы действием хромосомных генов, а не элементами самой цитоплазмы, то есть здесь действует механизм хромосомного наследования, который изменяет цитоплазму яйцеклетки еще до оплодотворения.
