- •1. Цитологические основы полового и бесполого размножения. Генетика пола.
- •2. Закономерности наследования признаков, установленные Менделем. Тетрадный анализ.
- •5. Доказательства роли днк как материального носителя наследственности. Открытие Уотсоном и Криком трёхмерной структуры днк, объясняющей её свойства как генетического материала.
- •4.Типы взаимодействия генов. Понятие об экспрессивности и пенетрантности.
- •13. Механизмы рекомбинации у бактерий (трансформация, конъюгация и трансдукция).
- •6.Транскрипция. Трансляция. Альтернативный сплайсинг. Основные характеристики генетического кода. Рамка считывания.
- •7. Понятие о модификационной и генотипической изменчивости (комбинативной и мутационной). Типы мутаций. Значение этих форм изменчивости в эволюции и селекции. Эпигенетическая изменчивость.
- •9. Нехромосомная наследственность. Плазмон и плазмогены. Цитоплазматическая мужская стерильность. Гибридный дисгенез. Предетерминация цитоплазмы
- •10. Задачи и методы и селекции. Понятие о сорте. Типы сортов. Аллополиплоидия как способ преодоления бесплодия отдаленных гибридов
- •Сортовые типы
- •11. Генная инженерия. Особенности трансформации у про- и эукариот. Банки генов. Саузерн-блоттинг как метод поиска нужных генов.
- •Метод - Рестрикция эндонуклеазами рестрикции для разрезания высокомолекулярной днк на более мелкие фрагменты.
- •Результаты
- •Применение
- •12. Геном человека и методы его изучения. Принципы построения цитологических, генетических и физических карт хромосом. «Прогулка по хромосоме».
- •14. Особенности репликации днк у про – и эукариот. Доказательства полуконсервативного способа репликации днк.
- •16. Естественный и искусственный отбор. Основные формы и значения в эволюции и селекции.
- •17. Генотип и фенотип. Норма реакции. Генокопии и фенокопии.
- •18. Генетическая теория рака. Ретротранспозоны. Понятие об обратной транскрипции.
- •19. Регуляция действия генов у про- и эукариот.
- •20.Молекулярные маркеры днк (пдрф, rapd, ssr). Микро- и минисателлиты. Фингерпринтинг как метод идентификации личности.
- •Термин "геномика" появился только в 1985 году и относится к науке, занимающейся картированием и секвенированием геномов.
- •23.Кариотип человека в норме и его аномалии, приводящие к хромосомным болезням.
- •Проявления синдрома
- •Синдром Пата́у (трисомия 13)
- •24. Популяция как элементарная единица эволюции. Генетическая структура популяций.
- •25. Понятие о биологическом виде (критерии). Основные способы видообразования.
- •19. Механизмы окислительного фосфорилирования.
- •27. Биохимические пути ассимиляции углекислого газа растениями с3 и с4 – типа.
- •28.Образование первичных аминокислот в растениях
- •29. Роль фитохромной системы в регуляции процесса цветения у растений.
- •30. Трансформация световой энергии при фотосинтезе. Регуляция процесса.
- •31. Общая характеристика простейших. Важнейшие особенности основных типов и классов. Разнообразие образа жизни и экологических адаптаций одноклеточных животных. Их роль в природе и для человека.
- •32. Основные гипотезы происхождения одноклеточных – сукцессивная и эндосимбиотическая, их достоинства и противоречия. Филогенетические взаимоотношения основных типов простейших.
- •33. Основные теории происхождения многоклеточных животных. Разнообразие фагоцителообразных предков многоклеточных. Направления, этапы и результаты их эволюции.
- •5 Типов клеток:
- •1. Подтип Жабродыщащие (Branchiata)
- •40. Ракообразные как первичноводные членистоногие, сохранившие комплекс плезиоморфных черт в строении и физиологии. Классификация, разнообразие, экологические адаптации, роль в природе и для человека.
- •43. Сравнительная характеристика пищеварительной системы в различных типах беспозвоночных. Основные направления ее эволюции
- •44. Основные направления эволюции нервной системы и органов чувств у беспозвоночных животных.
- •45.Общая характеристика паукообразных, их роль в природе. Класс Паукообразные
1. Цитологические основы полового и бесполого размножения. Генетика пола.
В основе бесполого размножения-митоз.Митоз сост. из4фаз:профаза,метофаза,анафаза,телофаза. В п увеличивается объем ядра, хромосомы спирализуются, по две центриоли расходятся к полюсам клетки. В конце п ядерная оболочка распадается на отдельные фрагменты. На протяжении профазы продолжается спирализация хромосом, которые утолщаются и укорачиваются. После распада ядерной оболочки хромосомы свободно и беспорядочно лежат в цитоплазме.
В м спирализация хромосом достигает максимума и укороченные хромосомы устремляются к экватору клетки, располагаясь на равном расстоянии от полюсов. Центромерные участки хромосом располагаются строго в одной плоскости, а сестринские центромеры и хроматиды обращены к противоположным полюсам.
В а центромера каждой из хромосом разделяется, и с этого момента хроматиды становятся самостоятельными дочерними хромосомами. Нити веретена, прикрепленные к центромерам, тянут хромосомы к полюсам клетки. Таким образом, в анафазе хроматиды удвоенных еще в интерфазе хромосом точно расходятся к полюсам клетки. В этот момент в клетке находятся два диплоидных набора хромосом.
Завершается митоз т. Хромосомы, собравшиеся у полюсов, деспирализуются и становятся плохо видимыми. Из мембранных структур цитоплазмы образуется ядерная оболочка.
Начиная с первого митотического деления оплодотворенной яйцеклетки — зиготы — все дочерние клетки, образовавшиеся в результате митоза, содержат одинаковый набор хромосом и одни и те же гены. Митоз — это способ деления клеток, заключающийся в точном распределении генетического материала между дочерними клетками.
Значение митоза:обеспечивает эмбриональное развитие, рост, восстановление органов и тканей.
У форм, размножающихся половым путем, в генеративных органах формируются гаметы, имеющие (n) набор хромосом. Мейоз необходим, чтобы после оплодотворения восстановился нормальный набор хромосом.
Мейоз включает два последовательных деления,выделяют4стадии:п,м,а и т.
Iмейотическое деление. Первое деление мейоза (редукционное). Редукция и кроссинговер осуществляются в профазе I мейоза. Она состоит из 5 последовательных стадий — лептотены, зиготены, пахитены, диплотены и диакинеза.В стадии лептотены (тонких нитей) ядро содержит нитеобразные хромосомы, аналогичные тому, что наблюдается в профазе митоза. Стадия зиготены (слияния нитей) - конъюгация. В таких условиях происходит обмен участками между гомологичными хромосомами. В стадии пахитены происходит обмен участками между гомологичными хромосомами. На стадии диплотены центромеры конъюгировавших хромосом начинают отталкиваться друг от друга. При расхождении четыре хроматиды образуют фигуру креста, получившую название хиазмы, в точках, которые являются последствием обмена гомологичными участками между несестринскими хроматидами. По завершении обмена хиазмы при дальнейшем расхождении хромосом механически начинают сдвигаться к концам хроматид, что получило название терминализации хиазм. Стадия диакинеза характеризуется максимальным укорочением хромосом. Стадия диакинеза заканчивает профазу I, ядерная оболочка растворяется, ядрышко исчезает, формируется веретено
В дальнейшем между такими хромосомами может произойти обмен одинаковыми, или гомологичными, участками. Такой процесс носитназвание кроссинговера.
В мI спирализация хромосом максимальна. Конъюгированные хромосомы располагаются по экватору.
В аI плечи гомологичных хромосом окончательно разделяются и хромосомы расходятся к различным полюсам. Число хромосом уменьшается в два раза, хромосомный набор становится гаплоидным. Формула хромосомного набора клетки после завершения первого мейотического деления 1п2с.
В тI на непродолжительное время образуется ядерная оболочка. Поскольку отдельные хромосомы гаплоидных дочерних клеток остаются удвоенными, во время интерфазы между I и II делениями мейоза редупликации ДНК не происходит. Клетки, образовавшиеся в результате I деления созревания, a отличаются по составу отцовских и материнских хромосом и, следовательно, по набору генов.
Мейоз — основа комбинативной генетической изменчивости.
IIмейотическое деление. Второе I деление мейоза в общем протекает так же, как обычное митотическое деление, с той лишь разницей, что делящаяся клетка гаплоидна (1n2с). С завершением телофазы II , заканчивается и весь процесс мейоза: из исходной первичной половой клетки образовались четыре гаплоидные клетки с хромосомным набором 1n1c.
Таким образом, сущность периода созревания состоит в том, что в половых клетках путем двукратного мейотического деления, количество хромосом уменьшается вдвое, а количество ДНК — вчетверо. Биологический смысл второго мейотического деления I заключается в том, что количество ДНК приводится в соответствие хромосомному набору.
Генетика пола-раздел генетики человека, изуч-ий роль мех-мов наследственности и наследственной изменчивости в процессе определения и дифференциации пола. При этом имеет значение, как определенный набор хромосом, так и действие ряда генов, одни из которых расположены на половых хромосомах, другие - на аутосомах.
Выделяют несколько уровней половой дифференциации. Первый связан с наличием Y хромосомы, присутствие которой необходимо для дифференциации гонад по мужскому типу. У мужчин формируется 2 типа спермиев с Х хромосомой (23, X) и с Y хромосомой (23, Y). В яйцеклетках набор хромосом в норме всегда 23, Х. Оплодотворение яйцеклетки спермием 23, Х приводит к развитию зародыша женского пола (с набором хромосом 46, XX), оплодотворение же спермием 23, Y ведёт к возникновению зародыша мужского пола (46, XY).
Наличие Y-xpo-мосомы является первым фактором, необходимым для формирования мужского пола плода. Если Y-хромосома отсутствует, формируется женский пол (в норме - 46, XX, при патологии половых хромосом-45, X; 47, XXX; 48, ХХХХ). В то же время при наличии Y-хромосомы, и не одной (как в норме), а двух, трёх или даже четырёх Х-хромосом, пол пациента будет мужским. Дальнейшее развитие пола находится под контролем HY-антигена, контролируемого Y-хромосомой. Как только начинает образовываться этот антиген, начинается дифференциация первичных гонад (до тех пор одинаковых) у зародышей мужского и женского пола. Поэтому если по каким-то причинам H-Y-антиген не формируется (либо он образуется, но клетки оказываются нечувствительными к антигену), идёт развитие по женскому типу. Крайне редкие случаи обнаружения хромосомного набора 46, XX у лиц фенотипически мужского пола (но, конечно, с аспермией) обычно объясняют нераспознанным переносом части генов Y-хромосомы на одну из аутосом. Вместе с тем и Y-хромосома, и H-Y-антиген определяют лишь генетическую детерминацию пола, но не формирование наружных половых органов. Половые органы у мужчин образуются из вольфовых, а у женщин из мюллеровых протоков. У зародышей мужского пола из вольфовых протоков формируются семенные пузырьки и семенные протоки. Гормоны, вырабатываемые клетками яичек у плодов мужского пола, определяют образование наружных половых органов. Если по тем или иным причинам эмбриональные яички не продуцируют соответствующие гормоны, то наружные половые органы будут формироваться по женскому типу.
