- •1.7 Фазовые состояния углеводородных систем и расчеты разгазирования нефти.
- •Константа фазового равновесия.
- •Уравнения фазовых концентраций.
- •Типовые задачи Типовая задача 1.21
- •Равновесные составы смеси нефти и газа при 0,3 мПа и 38 оС
- •Типовая задача 1.22
- •Молярные массы нефти и газа
- •Составы нефти и газа по ступеням сепарации
- •Типовая задача 1.23
- •Так как молярная масса получающегося газа равна
- •Составы конденсата и газа после компримирования при 0,5 мПа и охлаждении до 10оС
- •Задание для самостоятельной работы по теме 1.7 Задача 1.22
- •Исходные данные к задаче1.22
- •Нефтяные эмульсии
- •Типовые задачи Типовая задача 2.1
- •Типовая задача 2.2
- •Приложение к разделу 2
- •Плотность растворов неорганических солей
- •Типовая задача 2.3
- •Исходные данные к задаче 2.1
- •Исходные данные к задаче 2.2
- •Исходные данные к задаче 2.3
- •3.Сепарация
- •3.1 Выбор оптимального числа стутеней сепарации
- •Типовые задачи Типовая задача 3.1
- •Задания для домашней и самостоятельной работы по теме 3.1 Задача 3.1
- •3.2 Расчет сепараторов на пропукную способность.
- •3.2.1 Расчет вертикального гравитационного сепаратора
- •3.2.2 Расчет горизонтального гравитационного сепаратора по газу
- •Типовые задачи Типовая задача 3.2
- •Типовая задача 3.3
- •Типовая задача 3.4
- •Типовая задача 3.5
- •Задания для самостоятельной работы по теме 3.2 Задача 3.2
- •Задача 3.3
- •Задача 3.4
- •Задача 3.5
- •Задача 3.6
- •Исходные данные к разделу 3.2
1.7 Фазовые состояния углеводородных систем и расчеты разгазирования нефти.
Давление и температура в системе сбора и подготовки продукции добывающих скважин непрерывно изменяются, что сопровождается фазовыми превращениями: разгазированием нефти, кристаллизацией парафина, выпадением солей в сложных гидродинамических условиях. Фазовые превращения происходят при отделении нефти и конденсата от их паров в сепараторах, при хранении нефти и конденсата в резервуарах, при образовании и разложении кристаллогидратов углеводородных газов.
Сжатие и охлаждение углеводородных газов при компрессионных методах переработки газа и его транспорте сопровождается фазовыми переходами. Фазовые переходы имеют место при выветривании сырого бензина или конденсата в емкостях.
Если скорость установления термодинамического равновесия между фазами смеси значительно превышает скорость изменения давления или температуры, паровая и жидкая фазы находятся в термодинамическом равновесии.
В такой системе все же возможен переход вещества из одной фазы в другую: в условиях термодинамического равновесия происходит равновесный массообмен компонентов между фазами, т.е. количество каждого компонента, перешедшего из первой фазы во вторую за данный промежуток времени равно количеству компонента, перешедшему из второй фазы в первую за тот же промежуток времени.
В замкнутом объеме при термодинамическом равновесии масса или число молей каждого компонента в системе остаются неизменными.
В условиях термодинамического равновесия при невысоких давлениях (до 1МПа) и температурах справедливо уравнение Дальтона-Рауля о равенстве парциальных давлений компонентов в паровой и жидкой фазах:
(1.78)
где Niv, NiL - молярные концентрации i- го компонента в паровой и жидкой фазах соответственно;
P - давление паров смеси;
Qi - упругость насыщенных паров i-го компонента в чистом виде при заданной температуре системы.
Давление паров смеси над жидкостью в условиях термодинамического равновесия складывается из парциальных давлений компонентов, входящих в жидкость:
(1.79)
Таким образом, из уравнения равновесия (1.78) следует, что распределение углеводородов между фазами двухфазной равновесной системы протекает в соответствии с упругостью насыщенных паров углеводородов и их молярными концентрациями.
При нарушении равновесия в системе вследствие изменения температуры или давления начинается перераспределение углеводородов между фазами, которое происходит до тех пор, пока парциальные давления каждого компонента в паровой и жидкой фазах не сравняются.
Углеводороды, обладающие при данной температуре упругостью насыщенных паров Q большей, чем общее давление Р системы, будут иметь более высокую концентрацию в паровой фазе, чем в жидкой и наоборот, углеводороды с давлением насыщенных паров меньшим, чем давление паров смеси, будут иметь более высокую концентрацию в жидкой фазе, чем в паровой. Следовательно, состояние углеводород, находящихся в смеси, определяется не только давлением и температурой, но еще и составом фаз.
Используя законы Рауля и Дальтона-Рауля, зная температуру и давление, при которых находится смесь, по концентрации компонента в одной фазе можно найти его концентрацию в другой. (См. задачи по курсу 'Физика пласта').
Такое решение, при котором определяются только составы паровой и жидкой фаз, не позволяют определить молярные доли паровой и жидкой фаз а, следовательно, рассчитать материальный баланс работы сепараторов, конденсаторов, испарителей, разделительных колонн, процессов сжатия и охлаждения углеводородных газов.
