
- •1 Елементи теорії похибок
- •1.1 Основні поняття теорії похибок
- •Як правило, визначається у відсотках
- •1.2 Похибки засобів вимірювання
- •1.3 Похибки табличних величин
- •1.4 Правила округлення і виконання наближених обчислень
- •1.5 Похибки прямих вимірювань Похибки прямих вимірювань визначаються за формулою
- •1.6 Похибки непрямих вимірювань
- •1.7 Графічне відображення експериментальних результатів
- •Контрольні запитання
- •2 Elements of the theory of errors
- •2.1 Principal concepts of the theory of errors
- •2.2 Errors of instruments
- •2.3 Error of table quantities, count and rules of approximations
- •2.4 Errors of direct measurement
- •2.5 Errors of indirect measurements
- •2.6 Graph presentation of the experimental results
- •Control questions
- •3. Лабораторна робота № 1. Визначення густини тіл
- •3.1 Вступ
- •3.2 Вимірювання і визначення похибок
- •Контрольні запитання
- •4 Laboratory work № 1. Definition of a body density
- •4.1 System International units
- •4.2 Volume
- •4.3 Vernier scale
- •4.4 Micrometer screw gauge
- •4.5 Measurement of mass
- •4.6 Measurement of weight
- •4.7 Experimental Part
- •5 Лабораторна робота № 2. Визначення модуля юнга металів
- •5.1 Вступ
- •5.2 Опис установки
- •5.3 Порядок виконання роботи
- •Контрольні запитання
- •6 Laboratory work № 2. Measuring of Yung modulus of metals
- •6.1 Introduction
- •6.3 Experimental device
- •6.3 Experimental part
- •Control questions
- •Literature
- •7 Лабораторна робота № 3. Визначення коефіцієнта внутрішнього тертя методом стокса
- •7.1 Опис установки
- •7.2 Теорія методу Стокса
- •7.3 Порядок виконання роботи (завдання 1)
- •7.4 Порядок виконання роботи (завдання 2)
- •Контрольні запитання
- •8 Laboratory work № 3. Measuring the coefficient of internal friction by stocks’ method
- •8.1 Theory
- •8.2 Experimental part
- •Control questions
- •9 Лабораторна робота № 4.1. Пружний удар куль
- •9.1 Коротка теорія пружного удару
- •9.2 Порядок виконання роботи
- •Контрольні запитання
- •10 Лабораторна робота № 4.2. Пружний і непружний удаРи куль
- •10.1 Основні положення
- •10.2 Порядок виконання роботи
- •Контрольні запитання
- •Список літератури
- •11 Laboratory work № 4. Elastic impact of bodies
- •11.1 Task
- •11.2 Short theory
- •11.3 Elastic impact
- •11.4 Experimental part
- •Control questions
- •12 Лабораторна робота № 4.3. Непружний удар тіл
- •12.1 Коротка теорія непружного удару
- •12.2 Порядок виконання роботи
- •Контрольні запитання
- •Інструкцію склав доцент кафедри фiзики Манько в.К.
- •13 Laboratory work № 4.3. Inelastic impact of bodies
- •13.1 Short theory of inelastic impact
- •13.2 The sequence of performing the work
- •Control questions
- •Literature
- •2 Вимоги безпеки перед початком роботи
- •3 Вимоги безпеки під час виконання робіт
- •4 Вимоги безпеки після закінчення роботи
- •5 Вимоги безпеки в аварійних ситуаціях
2 Elements of the theory of errors
Measurement of physical quantities means their comparison with standard. There are two types of physical measurements:
1. Direct measurements are measurements when the investigated quantity x is taken by direct comparison with the standard performed with instruments.
2. Indirect measurements consist of direct measurements of physical quantities x1, x2,.., xn and calculations made on this basis the investigated quantity y by a functional dependency y = f(x1, x2 ,...,xn ).
For example: measurements of length by a ruler or measurements of temperature with a thermometer are direct measurements. But measurement of volume of a cylinder by the value of its height h and diameter d (these are direct measurements) with functional relation V=d2h/4 is an indirect measurement.
All measurements can be performed only up to a certain degree of precision. Error of measurements is defined as a deviation of the result of measurements from the true value of a measured quantity.
Then, by definition
,
where x is absolute error of x measures.
The problems of the Theory of Errors are:
1. To get the investigated quantity.
2. To get the error of measurements.
There are two kinds of measurements errors: systematic errors and accidental ones.
Systematic error is defined as a component of error; its quantity is constant in all measurements or is being regularly changed during the repeated measurements of the physical quantity.
Accidental error is defined as a component of error that is changed irregularly during repeated measurements of the same physical quantity.
One should distinguish between blunder and above mentioned errors. Its value is essentially greater than the expected error in given conditions. For example, these errors may be received if an instrument is faulty, or if an experimenter is inattentive and so on.
2.1 Principal concepts of the theory of errors
We can't define the true values of a physical quantity. We can define only the interval (xmin , xmax) of the investigated quantity with some probability . For example: we can affirm, that students' height may be defined between 1.5 m and 2.0 m with probability of 0.9. Then we can prove, that students' height may be defined between 1.6 m and 1.8 m with smaller probability of 0.6 and so on. Value of this interval is called the entrusting interval. On fig.2.1 interval of quantity being investigated x is represented.
Figure 2.1
Where x is the most probable value of quantity being measured; x is the half width of the entrusting interval of the measured quantity with probability of .
Therefore
we can estimate, that true value of the measured quantity may be
defined as
x
= x
x,
with
probability ,
or
.
If a quantity x has been measured n times and x1 , x2 ,..., xn are the results of the individual measurements then the most probable measured value or the arithmetic mean is:
(2.1)
The
deviation
is
called the accidental error (deviation) of a single measurement.
(2.2)
is called the mean accidental deviation of the measurements.
Mean root square is defined as
(2.3)
where t – Student’s constant for definite and n. The ratio of
(2.4)
is called the relative error of measurement and is usually expressed in percents:
.
(2.5)