
- •Причина необходимости моделирования
- •Причина необходимости моделирования .Причины почему нельзя работать с реальными объектами( размеры) примеры.
- •Условия превращения динамических систем в гибридные системы
- •Интервальный анализ(область применения и задачи для которых они применяются)
- •Возможности применения теории нечетких множеств и интервального анализа для описания различных видов неопределенности
- •Принципы моделирования (преимущества каждого принципа) Принципы моделирования.
- •Выбор различных видов моделей
- •Свойства нечетких множеств (которые позволяют применять их в задачах принятия решения)
- •Основные понятия теории нечетких множеств.
- •Сравнение понятий планирование, прогнозирование,предсказание и предвидение
- •Задачи и принципы прогнозирования
- •Роль Инженерии программного обеспечения
- •Качества по и качества процесса разработки(4 основные) Показательные качества
- •Частичный факторный эксперимент
- •Этапы моделирования
- •Первый этап моделирования. Определение цели моделирования.
- •Параллельные процессы на основе транзактов
- •Параллельные процессы Моделирование параллельных процессов.
- •Полно факторный эксперимент
- •Методы понижения дисперсии
- •Спектор Фурье и Вейвлет анализ
- •Дискретное время Время
- •Свойства устойчивости и чувствительности модели Оценка устойчивости.
- •Оценка чувствительности.
- •Эктраполяционные методы прогнозирования
- •Этапы выбора функции
- •Принципы модульности, абстракции, общности, разделения задач Разделение задач
- •Абстракция
- •Разграничение свойств по( устойчивость и надежность)
- •Моделирование случайных величин и событий Моделирование случайных событий
- •Моделирование случайных величин.
- •Стратегическое и тактическое планирование Стратегическое планирование имитационного эксперимента.
- •Тактическое планирование эксперимента.
- •Изменение шага с постоянным шагом и по особым состояниям
- •Изменение времени по особым состояниям
- •Характеристики последовательных псевдо-случайных чисел
- •Моделирование случайных событий Моделирование случайных событий
- •Процесс принятия решений
Возможности применения теории нечетких множеств и интервального анализа для описания различных видов неопределенности
Для реальных сложных систем характерно наличие одновременно разнородной информации:
1. точечных замеров и значений параметров;
2. допустимых интервалов их изменения;
3. статистических законов распределения для отдельных величин;
4. лингвистических критериев и ограничений, полученных от специалистов-экспертов и т.д.
Наличие в сложной многоуровневой иерархической системе управления одновременно различных видов неопределенности делает необходимым использование для принятия решений теории нечетких множеств, которая позволяет адекватно учесть имеющиеся виды неопределенности.
Соответственно и вся информация о режимах функционирования подсистем, областях допустимости и эффективности, целевых функциях, предпочтительности одних режимов работы перед другими, о риске работы на каждом из режимов для подсистем и т.д. должна быть преобразована к единой форме и представлена в виде функций принадлежности. Такой подход позволяет свести воедино всю имеющуюся неоднородную информацию: детерминированную, статистическую, лингвистическую и интервальную.
В целом алгоритмы на базе нечетких множеств хорошо зарекомендовали себя на практике для самого разнообразного круга задач:
1. для создания математической модели многослойного оценивания запасов угля в пластах;
2. применение нечетких уравнений и элементов нечеткой логики для диагностирования сложных систем - пакет программ Thermix-2D для анализа динамики АЭС;
3. при управлении нестационарным процессом движения морских геолого-геофизических комплексов;
4. для оценки показателей качества программных средств;
5. в системах искусственного интеллекта для управления работой технологического оборудования (фирмы "Тексако кемиклз" и "Экссон кемиклз");Нечетких множеств в стохастических системах. Это применение связано с тем, что для многих систем трудно получить точные значения вероятностных характеристик (например, вероятности отказов компонентов).
Схема процесса моделирования
Модель представляет собой абстрактное описание системы, уровень детализации которого определяет сам исследователь. Человек принимает решение о том, является ли данный элемент системы существенным, а следовательно, будет ли ой включен в описание системы. Это решение принимается с учетом цели, лежащей в основе разработки модели. От того, насколько хорошо исследователь умеет выделять существенные элементы и взаимосвязи между ними, зависит успех моделирования.
Система рассматривается как состоящая из множества взаимосвязанных элементов, объединенных для выполнения определенной функции. Определение системы во многом субъективно, т. е. оно зависит не только от цели разработки модели, но и от того, кто именно определяет систему.
Рис.3.1 Процесс построения модели
Итак, процесс моделирования начинается с определения цели разработки модели, на основе которой затем устанавливаются границы системы и необходимый уровень детализации моделируемых процессов Выбранный уровень детализации должен позволять абстрагироваться от неточно определенных из-за недостатка информации аспектов функционирования реальной системы. В описание системы, кроме того, должны быть включены критерии эффективности функционирования системы и оцениваемые альтернативные решения, которые могут рассматриваться как часть модели или как ее входы. Оценки же альтернативных решений по заданным критериям эффективности рассматриваются как выходы модели. Обычно оценка альтернатив требует внесения изменений в описание системы и, следовательно, перестройки модели. Поэтому на практике процесс построения модели является итеративным. После того как на основе полученных оценок альтернатив могут быть выработаны рекомендации, можно приступать к внедрению результатов моделирования. При этом в рекомендациях должны быть четко сформулированы как основные решения, так и условия их реализации.