Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 9_Формальные методы.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
661.5 Кб
Скачать

Аналитические методы

Эти группы методов получили наибольшее распространение в практике проектирования и управления. Правда, для представления промежуточных и окончательных результатов моделирования широко используются графические представления (графики, диаграммы и т. п.). Однако последние являются вспомогательными; основу же модели, доказательства ее адекватности составляют те или иные направления аналитических и статистических представлений. Поэтому, несмотря на то, что по основным направлениям этих двух классов методов в вузах читаются самостоятельные курсы лекций, мы все же кратко охарактеризуем их особенности, достоинства и недостатки с точки зрения возможности использования при моделировании систем.

Аналитическими в рассматриваемой классификации названы методы, которые отображают реальные объекты и процессы в виде точек (безразмерных в строгих математических доказательствах), совершающих какие-либо перемещения в пространстве или взаимодействующих между собой.

В табл. 2.1 эта особенность аналитических представлений условно иллюстрируется символическим образом, преобразования сложной системы в точку, совершающую какое-то движение (или обладающую каким-то поведением), посредством -оператора (функции, функционала) Ф[Sх]. Как правило, поведение точек, их взаимодействие описываются строгими соотношениями, имеющими силу закона.

Основу понятийного (терминологического) аппарата этих представлений составляют понятия классической математики (величина, формула, функция, уравнение, система уравнений, логарифм, дифференциал, интеграл и т. д.).

Аналитические представления имеют многовековую историю развития [2.41, 2.45 и др.], и для них характерно не только стремление к строгости терминологии, но и к закреплению за некоторыми специальными величинами определенных букв (напр., удвоенное отношение площади круга к площади вписанного в него квадрата -пи равно 3,14; основание натурального логарифма - е равно 2,7 и т.д.).

На базе аналитических представлений возникли и развиваются математические теории различной сложности - от аппарата классического математического анализа (методов исследования функций, их вида, способов представления, поиска экстремумов функций и т. п.) до таких новых разделов современной математики, как математическое программирование (линейное, нелинейное, динамическое и т. п.), теория игр (матричные игры с чистыми стратегиями, дифференциальные игры и т. п.).

Эти теоретические направления стали основой многих прикладных, в т. ч. теории автоматического управления, теории оптимальных решений и т. д.

При моделировании систем применяется широкий спектр символических представлений, использующих «язык» классической математики. Однако далеко не всегда эти символические представления адекватно отражают реальные сложные процессы, и их в этих случаях, вообще говоря, нельзя считать строгими математическими моделями.

Большинство из направлений математики не содержит средств постановки задачи и доказательства адекватности модели. Последняя доказывается экспериментом, который по мере усложнения проблем становится также все более сложным, дорогостоящим, не всегда бесспорен и реализуем.

В то же время в состав этого класса методов входит относительно новое направление математики математическое программирование, которое содержит средства постановки задачи и расширяет возможности доказательства адекватности моделей.

Идея этого направления была предложена инженером, а впоследствии за работы в этой области лауреатом государственной и нобелевской премий Л.В.Канторовичем для решения экономических задач (в частности, - задачи раскроя фанеры).

Для пояснения этих особенностей рассмотрим упрощенный пример.

Предположим, что в трех цехах (Ц1, Ц2, ЦЗ) изготавливается два вида изделий И1 и И2. Известна загрузка каждого цеха ai (оцениваемая в данном случае в про центах) при изготовлении каждого из изделий и прибыль (или цена, объем реализуемой продукции в рублях) ci от реализации изделий. Требуется определить, сколько изделий каждого вида следует производить при возможно более полной загрузке цехов, чтобы получить за рассматриваемый плановый период максимальную при быль или максимальный объем реализуемой продукции. Такую ситуацию удобно отобразить таблицей 2.3

Данная таблица подсказывает характерную для задач математического программирования форму представления задачи, т. е. целевую функцию (в данном случае определяющую максимизацию прибыли или объема реализуемой продукции)

и ряд ограничений (в данном случае диктуемых возможностями цехов, т. е. их пре дельной 100%-ной загрузкой).

В данном случае ограничения однородны и их можно записать короче:

В общем случае может быть несколько групп подобных ограничений (например, по имеющимся материалам разного вида, себестоимости, заработной плате рабочих и т. п.).

Анализ хода постановки и решения задачи позволяет выявить основные особенности математического программирования:

введение понятий целевая функция и ограничения и ориентация на их формирование является фактически некоторыми средствами постановки задачи: причем эти средства могут использоваться даже если не удается сформировать систему непротиворечивых ограничений или записать целевую функцию в формальном виде, поскольку удается уточнить представление о проблемной ситуации и, таким образом, поставить задачу хотя бы в первом приближении;

при использовании методов математического программирования появляется возможность объединения в единой модели разно родных критериев (разных размерностей, предельных значений), что очень важно при отображении реальных проектных и производственных ситуаций:

модель математического программирования допускает (и даже ориентирует на это) выход на границу области определения переменных (в то время, как методы классической математики требуют введения строгих начальных и граничных условий, значений которых не может принимать переменная в процессе анализа модели);

изучение методов решения задач математического программирования позволяет получить представление о пошаговом приближении к решению, т. е. о пошаговом алгоритме получения результата моделирования;

графическая интерпретация задачи дает наглядное представление об области допустимых решений (которая на рис. 2.4 заштрихована), что помогает в практических ситуациях даже в тех случаях, когда не удается получить формальное отображение целевой функции и строго решить задачу математического программирования.

Благодаря рассмотренным особенностям методы математического программирования можно кратко охарактеризовать как методы, имеющие в отличие от классической математики некоторые средства постановки задачи. В частности, термин целевая функция часто используется даже в тех случаях, когда очевидна невозможность формального установления детерминированных взаимосвязей между компонентами и целями системы. Помогает в постановке за дачи и понятие области допустимых решений. Этим объясняется популярность рассматриваемого направления; однако получаемые в таких случаях модели уже не будут относиться к моделям математического программирования и к аналитическим методам.

Резюмируя, еще раз обратим внимание на то. что аналитические методы применяются в тех случаях, когда свойства системы можно отобразить с помощью детерминированных величин или зависимостей, т. е. когда знания о процессах и событиях в некотором интервале времени позволяют полностью определить поведение их вне это го интервала. Эти методы используются при решении задач движения и устойчивости, оптимального размещения, распределения работ и ресурсов, выбора наилучшего пути, оптимальной стратегии поведения, в т. ч. в конфликтных ситуациях и т. п.

В то же время при практическом применении аналитических представлений для отображения сложных систем следует иметь в виду, что они требуют установления всех детерминированных связей между учитываемыми компонентами и целями системы в виде аналитических зависимостей. Для сложных многокомпонентных. многокритериальных систем получить требуемые аналитические зависимости крайне трудно. Более того, даже если это и удается, то практически невозможно доказать правомерность применения таких выражений, т. е. адекватность модели рассматриваемой задаче. В таких ситуациях следует обратиться к другим методам моделирования.

Статистические представления сформировались как самостоятельное научное направление в середине прошлого века (хотя возникли значительно раньше). Основу их составляет отображение явлений и процессов с помощью случайных (стохастических) событий и их поведений, которые описываются соответствующими вероятностными (статистическими) характеристиками и статистическими закономерностями.

Термин "стохастические" уточняет понятие "случайный", которое в обыденном смысле принято связывать с отсутствием причин появления событий, с появлением не только повторяющихся и подчиняющихся каким-то закономерностям, но и единичных событий: процессы же, отображаемые статистическими закономерностями, должны быть жестко связаны с заранее заданными, определенными причинами, а "случайность" означает, что они могут появиться или не появиться при наличии заданного комплекса причин.