
- •Характерные черты современного естествознания
- •Необходимые и достаточные правила научного познания по Декарту и Ньютону
- •Общие принципы природы (инвариантность, относительность, дополнительность, соответствие)????
- •Основные этапы развития естествознания.
- •Предмет естествознания. Естественно- научная и гуманитарная культура.
- •Уровни естественно- научного познания. Формы научного знания.
- •Основные характеристики научного знания. Современные концепции развития науки.
- •Уровни научного познания:
- •Формы научного познания:
- •Методы научного познания:
- •Основные формы познания
- •Методы научного познания и их классификация
- •Структура научного познания
- •Этапы становления по Ясперсу и динамика по Куну современной науки
- •Сущность, цели и задачи естествознания. Основные естественные науки
- •Периодизация истории естествознания
- •Картина мира (бытия). Современная естественно- научная картина мира
- •Фундаментальные закономерности существования и развития природы.
- •Предпосылки научной революции в естествознании на рубеже 19-20в
- •Важнейшие открытия в истории естествознания 20-21 в. Астрономия
- •Особенности развития естествознания в современных условиях
- •Физическая картина мира, ее стороны и структура
- •Механическая картина мира и ее характерные особенности
- •Электромагнитная картина мира
- •Единая теория поля и ее характерные особенности
- •Основные этапы развития физики
- •Основные понятия физики (физические системы, физические величины)
- •Основы термодинамики (сущность, постулаты, начала)
- •Основы электродинамики (сущность, содержание, постулаты)
- •Теория развития звезд по Шкловскому
- •Гипотеза образования солнечной системы
- •Основные модели и теории эволюции вселенной
- •Сущность процесса эволюции звезд
- •Биология как наука, ее структура и основные постулаты
- •Основные направления биологических исследований
- •Этапы развития генетики
- •Основные положения (постулаты) стэ
- •Основные теории возникновения жизни на земле. Этапы биохимической и биологической эволюции.
- •Молекулярно- генетический уровень организации живой природы
- •Онтогенетический уровень организации живой природы
- •Популярно- видовой уровень организации живой природы
- •Биогеоценозный (экосистемный )уровень организации живой природы
- •Биосфера: сущность, состав, основные понятия
- •Периодизация истории развития эволюционных идей. Теория естественного отбора Дарвина
- •Основные антидарвинистические эволюционные концепции (неоламаркизм, телеогенез, сальтационизм, генетический антидарвинизм)
- •Синтетическая теория эволюции, основные положения, явления и факторы
- •Сущность, особенности и системы современных химических знаний.
- •Основные уровни химии и ее структурные разделы
- •Законы принципы и понятия современного химического знания
- •Концепция развития земли. Современные геологические знания об этапах эволюции земли
- •Основные оболочки земли или геосфера и их характеристика
- •Основные объекты геологических исследований. Методы геологии
- •Объект, предмет и тенденции современного математического знания. Направления взаимосвязи математики и естественного знания сегодня
- •Сущность, значение и наиболее важные черты кибернетики
- •Наиболее специфические понятия и основные тенденции в современной кибернетики
- •Общий смысл комплекса синергетических идей. Синергетический подход.
- •Проблема появления человека на земле, линия эволюции человека. Сходство и отличие человека и животного.
- •Биоэтика и ее основные постулаты.
- •Сущность этнологии по Гумилеву. Этапы этногенеза
- •Экология человека, проблемы и основные понятия
- •Основные концепции современной физиологии
- •1. Основные концепции современной физиологии
- •60.Кровь и системы кровообращения в организме человека.
- •3. Система кровообращения
- •61.Лимфатическая и дыхательная система в организме человека
- •5. Дыхательная система
- •6. Пищеварительная система
- •62.Обмен веществ и энергии в организме человека
- •8. Физиология выделения
- •9. Железы внутренней секреции
- •63.Нервная и вегетативная нервные системы в организме человека
- •11. Вегетативная нервная система
- •64. Внд как основа психического поведения человека
- •65.Основные идеи и принципы концепции коэволюции
- •66.Современная естественно- научная картина мира. Открытия в естествознании, которые привели к научной революции в 20в
- •67.Направления развития нейрофизиологии. Основные постулаты психогенеза
- •68.Экосистема. Принципы функционирования экосистемы (по Реймерс)
Общие принципы природы (инвариантность, относительность, дополнительность, соответствие)????
- фундаментальные принципы естествознания как отражение всеобщих законов, которые проявляются на всех уровнях организации материи.
Принцип относительности
Принцип относительности впервые был сформулирован Галилеем для механического движения: никакими опытами нельзя обнаружить покоится система отсчета или движется равномерно и прямолинейно. Все подобные системы называют инерциальными (ИСО). ИСО -это упрощенная модель, ибо все принимаемые системы строго говоря неинерциальны. С учетом законов Ньютона принцип относительности можно сформулировать: в инерциальных системах отсчета законы классической механики имеют одинаковую форму. Более обобщенный вид он принял в теории относительности, разработанной А.Эйнштейном (1879-1955): законы природы инвариантны относительно ИСО.
Принцип системности
Мироздание является гигантской суперсистемой, в которую в качестве составных элементов входят все существующие подсистемы, начиная от элементарных частиц и заканчивая Вселенной. Любой предмет или объект являются системой- упорядоченным множеством взаимосвязанных элементов, которое проявляет себя как целостность. Отдельные элементы образуют систему, если это энергетически выгодно. Например, молекула образуется из атомов только в том случае, если потенциальная энергия такого образования будет меньше суммы потенциальных энергий ее элементов, существующих по отдельности. Каждый элемент имеет свою структуру (строение) и выполняет в системе определенные функции. Сам по себе он тоже является системой, только более низкого иерархического уровня. Изменение структуры системы может существенно изменить ее функции и наоборот необходимость изменить какие-то функции приводит к переструктуризации системы. Это достаточно хорошо иллюстрируется на примере биологической эволюции, когда необходимость адаптации организмов к изменяющимся условиям среды приводит к взаимосвязанным изменениям структуры и функций отдельных органов, органных систем или всего организма в целом. В этом отражается глубинная диалектическая связь структуры и функции. Разноуровневые системы образуют иерархии, каждый член которых, с одной стороны, является элементом системы более высокого уровня, а с другой, состоит из совокупности взаимодействующих элементов более низкого уровня. Это свойство природы позволяет исследовать сложные системы, начиная от низкого уровня их организации и последовательно переходя к более высоким.
Прежде чем понять систему как целостность и искать общие подходы к описанию ее функционирования, нужно изучить каждый элемент по отдельности, выделить те их свойства, которые наиболее существенны для изучаемой иерархии..
Одни и те же элементы или системы могут входить в разные иерархии и по разному себя проявлять. Поэтому в зависимости от задач исследования одни и те же элементы можно выстраивать по-разному: по размерам (масштабный критерий) в порядке усложнения их структуры (структурный критерий), по функции элементов (функциональный), либо выбрать какой-то иной признак. Масштабный критерий позволяет подразделить системы на микро-, макро- и мегасистемы, структурный - простые и сложные, функциональный - выделить неживое - живое - социальное, информационный - позволяет выделить системы с разным уровнем информационного обмена - статические, простые динамические, авторегулирующиеся, самоорганизующиеся и другие.
Иерархичность и системность окружающего мира является его фундаментальным свойством
Принцип направленности процессов
Весь Универсум является динамической, изменяющейся во времени суперсистемой. Все изменения в ней происходят за счет внутренних причин и в рамках законов, присущих всей суперсистеме. Это аксиома, принятая наукой. О возможности существования внешних по отношению к Универсуму причин ей ничего неизвестно, ибо это лежит за пределами ее возможностей. Эта аксиома лежит в основе следующей посылки: Универсум является самоорганизующейся системой. Все подсистемы Универсума взаимодействуют между собой. Их изменение обусловлено не только их внутренними причинами, но и внешними воздействиями. Они являются открытыми и функционируют в некотором едином ритме.
Окружающий нас мир изменчив процессы могут протекать в двух направлениях: либо в сторону самоорганизации и усложнения систем (эволюции), либо в сторону деградации (инволюции) и разрушения. В представлениях науки это оформилось в виде принципа направленности развития природных процессов. Первоначально он был сформулирован применительно к закрытым термодинамическим газовым системам. Однако в реальности закрытых систем не существует, закрытая система есть лишь удобная модель для исследования каких-то частных особенностей того или иного явления.
Закрытая термодинамическая система обладает одним замечательным свойством. Благодаря явлениям теплопереноса, диффузии, внутреннего трения внутри самой системы она самопроизвольно и необратимо стремится к макросостоянию с наименьшей энергией (состоянию динамического равновесия). В этом состоянии все макропараметры системы в разных точках занимаемого ею объема - давление, температура, плотность, концентрация - выравниваются. Но равновесное состояние не есть состояние покоя. В газе продолжается беспорядочное хаотическое движение молекул, система пребывает в состоянии динамического хаоса. Поэтому каждое мгновение в результате столкновений изменяются энергии и скорости отдельно взятых молекул, а значит изменяются и микропараметры системы. То есть, одному макросостоянию соответствует целый набор или, как говорят, ансамбль микросостояний. Термодинамические процессы, протекающие в закрытых системах, необратимы. Необратимость характерна и для многих природных процессов. Например, колебания маятника из-за потерь энергии, которая идет на нагревание окружающей среды, затухают. Но сколько бы мы ни нагревали окружающую среду, маятник от этого не начнет колебаться. Разбитая ваза сама собой не соберется из кусочков, нагретая наковальня не заставит подпрыгивать молот, более холодное тело не будет самопроизвольно передавать свое тепло более нагретому.
Складывается впечатление, что преобладающей тенденцией природных процессов является стремление к разрушению упорядоченностей, случайно возникших в результате маловероятных флуктуаций. На основе этого вывода в конце XIX века была выдвинута гипотеза «тепловой смерти» Вселенной. Смысл ее заключался в следующем: если Вселенная является закрытой системой, то рано или поздно она придет к тепловому равновесию, все упорядоченные системы разрушатся, и она перейдет в состояние исходного хаоса, что равносильно ее смерти как упорядоченной системы.
Однако уже к началу XIX века имелось множество фактов, подтверждающих, что противоположная тенденция - самоупорядочения (самоорганизации) и самоусложнения систем также закономерный процесс. Современная наука считает, что большинство существующих систем благодаря обменным процессам с окружающей средой, находится в состоянии, далеком от термодинамического равновесия, а их развитие происходит в направлении возрастающей упорядоченности. Порядок и Хаос - это две стороны процесса развития систем.
Принцип периодичности
Замечено, что чередование фаз в поведении систем разной природы - космологических, физических, химических, биологических, социальных и других - наблюдается с определенной периодичностью. Ежедневно всходит и заходит Солнце, небесные светила через известные промежутки времени занимают определенные места на небосводе. Планеты совершают периодические движения вокруг собственной оси и центрального светила, звездные системы вращаются вокруг центра Галактики. Периодичность наблюдается в процессах, протекающих в недрах звезд и планет. Периодичность - качество, характерное для состояния химических систем. Это, прежде всего, периодичность свойств химических элементов, связанная с периодичностью их электронного строения. Спиралеобразный вид многих галактик, спиральные вихри циклонов, спиральные формы раковин улитки и моллюска, рогов некоторых животных, спираль ДНК - все это проявление периодичности. Периодичность присуща структуре сложных биохимических молекул (белки, нуклеиновые кислоты). Периодически повторяется элементарная ячейка в кристаллической решетке. С определенной периодичностью наблюдается чередование фаз в развитии экономических систем: подъем-процветание-спад-застой-подъем (циклы Кондратьева). Ритмично работает двигатель любой машины. Красота музыки и поэзии ощущается человеком через их ритм. Периодические колебания маятника, пружины или струны, напряжения и силы переменного тока, векторов электрической напряженности и магнитной индукции электромагнитной волны, периодичность функционирования отдельных подсистем живых организмов (клеток, тканей, органов) и организма в целом - это явления одного порядка.
Похоже, что периодичность является фундаментальным свойством природы, важнейшим условием постоянства структур и функционирования систем. Однако в окружающей нас жизни также часто встречаются и апериодические, затухающие процессы. Как правило, они связаны с сильным рассеянием энергии. Если нет ее поступлений извне, любой процесс в конце концов останавливается (например, затухание колебаний маятника) или вообще система полностью разрушается.
Периодичность и апериадичность являются неотъемлемыми свойствами любой развивающейся системы. Периодичность характеризует некоторую устойчивость системы; ее нарушение приводит к появлению неустойчивости, которая может привести либо к разрушению, либо при благоприятных внешних условиях стать шансом для перехода системы в новое более высокое качественное состояние.
Принцип симметрии
Симметрия (греч. symmetria - соразмерность, пропорция, соответствие, порядок, гармония) является всеобщим свойством природы и широко представлена в творчестве человека и созданных его руками вещах. Все виды симметрий можно разделить на внешние и внутренние. Внешняя симметрия наглядна и наблюдаема. Внутреннюю симметрию визуально наблюдать невозможно, она глубоко скрыта в математических уравнениях описывающих состояние системы. В качестве примера можно привести симметрию уравнений Максвелла, описывающих свойства электромагнитного поля, которая отражает внутреннюю глубинную связь между его электрической и магнитной составляющими.
Внешняя симметрия - пространственная или геометрическая - широко представлена в окружающем мире. Это симметрия молекул, кристаллов, живых организмов, зданий, сооружений, планетарных систем и многих космических образований. У любого симметричного объекта всегда есть какой-либо элемент симметрии - ось, центр, плоскость или их комбинация. При операциях симметрии - поворотах и отражениях - симметричные структуры совпадают сами с собой. Симметрия живых организмов возникла в процессе эволюции жизни. Первоначально зародившиеся в мировом океане живые организмы обладали самой идеальной формой - сферической. Распространение видов в другие среды потребовало приспособленности к жизни и к перемещениям в других средах, к специфичности проявления в них законов природы. Например, конусообразная форма ели, имеющая вертикальную ось симметрии, связана с необходимостью доступа солнечного света к нижним ветвям и устойчивости дерева. Такая форма приобреталась постепенно в процессе эволюции вида и адаптации к условиям произрастания, немаловажное значение при этом имеет закон всемирного тяготения. Внешняя симметрия насекомых и животных связана с необходимостью держать равновесие при перемещении, извлекать больше энергии из окружающей среды и эффективнее ее тратить. Еще более глубокий смысл приобретает симметрия в физических и химических системах. Наиболее устойчивыми являются молекулы, обладающие высокой симметрией. Симметрия электронной оболочки у инертных газов предопределяет их поведение в химических реакциях. Симметрия молекул обуславливает характер молекулярных спектров. Симметрией обладают все кристаллы, представляющие собой периодическое повторение элементарной ячейки.
Но и асимметрия в мире достаточно широко распространена. Организмы оказываются асимметричными при учете их внутреннего строения (сердце - слева, печень - справа и т.д.). И при зеркальном отражении уже не совпадают сами с собой. Ей обязаны своим существованием зеркально асимметричные молекулы стереоизомеров. Молекула ДНК также асимметрична, причем ее спираль всегда закручивается вправо. Примером функционально асимметричной структуры является мозг человека.
Асимметрия и симметрия, являясь фундаментальными свойствами природы, образуют диалектическое единство, тесно связаны с понятиями устойчивости и неустойчивости, порядка и беспорядка, организации и дезорганизации, которые отражают свойства состояний систем и динамику процессов их развития, глубинную взаимосвязь между динамическими и статистическими законами.