
- •Кондиционеры кондиционеры. Как это было
- •Компрессионный цикл охлаждения холодильной машины. (Теория)
- •Основные элементы цикла охлаждения
- •Энтальпия хладагента (необязательно рассказывать клиенту)
- •Теоретический цикл охлаждения
- •2. Конденсация
- •3. Регулятор потока
- •4. В испарителе
- •Реальный цикл охлаждения
- •Эффективность цикла охлаждения холодильной машины
- •Принцип работы кондиционера (Кратко)(предназначено для клиента)
- •Конструкция кондиционера
- •1.Компрессоры: принцип работы и типы
- •Поршневые компрессоры
- •Ротационные компрессоры вращения (наиболее часто применяемые)
- •Компрессор со стационарными пластинами
- •К омпрессор с вращающимися пластинами
- •Спиральные компрессоры scroll
- •Винтовые компрессоры (применяются в мощных машинах (для информации))
- •Винтовой компрессор с одинарным винтом:
- •Винтовой компрессор с двойным винтом:
- •2.Теплообменник
- •3.Терморегулирующий вентиль
- •4.Четырех ходовой клапан
- •Принцип работы кондиционера на тепло
- •Особенности работы кондиционера в условиях низких температур
- •Инверторные кондиционеры
- •Т ипы кондиционеров
- •1.Оконный кондиционер
- •2.Мобильные кондиционеры
- •3. Кондиционеры сплит-системы
- •3.1.Сплит-системы настенного типа (10 –100 м2)
- •3.2.Мульти сплит-системы
- •3.3.Канальные сплит-системы (50 – 300 м2)
- •Принцип работы канальной сплит-системы с приточной вентиляцией.
- •3.4.Сплит-системы кассетного типа (40 – 150 м2)
- •3.5.Напольно-потолочные сплит-системы (40 – 150 м2)
- •3.6.Сплит-система колонного типа (80 –180 м2)
- •3.7.Мультизональные сплит-системы
- •4.Крышные кондиционеры
- •5.Центральный кондиционер
- •6.Прецизионные кондиционеры
- •Функции кондиционеров Основные режимы работы кондиционера
- •Дополнительные режимы работы кондиционера
- •Есть ли у кондиционера возможность притока свежего воздуха?
- •Упрощенная методика расчета мощности кондиционера
- •Монтаж кондиционеров
- •Уровень шума кондиционеров
- •Причины выхода кондиционера из строя
- •Бренды, поставляемые компанией русклимат
- •Три сестры: fujitsu – fuji – general
- •Обзор рынка кондиционеров. Конкуренты
Эффективность цикла охлаждения холодильной машины
Отображение на диаграмме: C1-L - потеря давления при всасывании M-D1 - потеря давления при выходе HD-HC1 - теоретическое изменение энтальпии (теплосодержания) при сжатии HD1-HC1 - реальное изменение энтальпии (теплосодержания) при сжатии C1D - теоретическое сжатие LM - реальное сжатие
Для выбора лучшего из циклов охлаждения необходимо оценивать их эффективность. Обычно показателем эффективности цикла холодильной машины служит КПД или коэффициент термической (термодинамической) эффективности.
Коэффициент термической эффективности - это:
- отношение изменения энтальпии хладагента в испарителе (НС-НВ) к изменению энтальпии в процессе сжатия (HD-HC).
- или: соотношение мощности охлаждения и электрической мощности, которую потребляет компрессор холодильной машины.
Например, если коэффициент термической эффективности какой-либо холодильной машины равен 2, то на каждый кВт потребляемой электроэнергии эта машина производит 2 кВт холода.
Принцип работы кондиционера (Кратко)(предназначено для клиента)
Итак, в основе работы кондиционера лежит перемещение тепла сжиженным газом, который называют хладагентом, в процессе перехода его из жидкости в пар и обратно. Т.о. процесс работы кондиционера практически ничем не отличается от процесса работы обычного холодильника. Температура кипения хладагента намного ниже температуры кипения воды. Например, температура кипения наиболее часто используемого хладагента - фреона R-22 составляет 5-10°С, в то время как вода кипит при температуре 100°С. Рассмотрим цикл работы кондиционера в режиме охлаждения. Благодаря работе компрессора, размещенного в наружном блоке, во внутреннем блоке создается пониженное давление. Температура хладагента в этот момент равна 5-10°С, поэтому он начинает кипеть и переходит в пар. Необходимая для этого энергия поступает от теплого воздуха помещения, отдающего часть своего тепла хладагенту. Охлажденный таким образом воздух возвращается вентилятором внутреннего блока обратно в помещение. В то же время парообразный хладагент, проходя через компрессор наружного блока, сжимается под воздействием высокого давления и температура его увеличивается до 50-60°С. Далее горячий пар охлаждается в наружном блоке и снова превращается в жидкость, отдавая тепло окружающему воздуху при помощи вентилятора наружного блока. И даже если температура окружающей среды достигает 40-45°, она все же ниже температуры хладагента. После конденсатора жидкий хладагент пропускается через капиллярную трубку. Давление при этом резко падает и температура хладагента вновь опускается до 5-10°С, в результате чего жидкость снова начинает кипеть в испарителе, поглощая тепло из охлаждаемого помещения.
Таким образом, при работе кондиционера происходит перенос тепла из среды, в которой находится испаритель (внутреннее помещение) в ту среду, где находится конденсатор (улица).
Конструкция кондиционера
1.Компрессоры: принцип работы и типы
Один из главных элементов любой холодильной машины - это компрессор.
Компрессор всасывает пар хладагента, имеющий низкие температуру и давление, затем сжимает его, повышая температуру (до 70 - 90°С) и давление (до 15 - 25 атм.), а затем направляет парообразный хладагент к конденсатору.
Основные характеристики компрессора - степень компрессии (сжатия) и объем хладагента, который он может нагнетать. Степень сжатия - это отношение максимального выходного давления паров хладагента к максимальному входному.
В холодильных машинах используют компрессоры двух типов:
поршневые - с возвратно-поступательным движением поршней в цилиндрах;
ротационные, винтовые и спиральные- с вращательным движением рабочих частей.