- •Кондиционеры кондиционеры. Как это было
- •Компрессионный цикл охлаждения холодильной машины. (Теория)
- •Основные элементы цикла охлаждения
- •Энтальпия хладагента (необязательно рассказывать клиенту)
- •Теоретический цикл охлаждения
- •2. Конденсация
- •3. Регулятор потока
- •4. В испарителе
- •Реальный цикл охлаждения
- •Эффективность цикла охлаждения холодильной машины
- •Принцип работы кондиционера (Кратко)(предназначено для клиента)
- •Конструкция кондиционера
- •1.Компрессоры: принцип работы и типы
- •Поршневые компрессоры
- •Ротационные компрессоры вращения (наиболее часто применяемые)
- •Компрессор со стационарными пластинами
- •К омпрессор с вращающимися пластинами
- •Спиральные компрессоры scroll
- •Винтовые компрессоры (применяются в мощных машинах (для информации))
- •Винтовой компрессор с одинарным винтом:
- •Винтовой компрессор с двойным винтом:
- •2.Теплообменник
- •3.Терморегулирующий вентиль
- •4.Четырех ходовой клапан
- •Принцип работы кондиционера на тепло
- •Особенности работы кондиционера в условиях низких температур
- •Инверторные кондиционеры
- •Т ипы кондиционеров
- •1.Оконный кондиционер
- •2.Мобильные кондиционеры
- •3. Кондиционеры сплит-системы
- •3.1.Сплит-системы настенного типа (10 –100 м2)
- •3.2.Мульти сплит-системы
- •3.3.Канальные сплит-системы (50 – 300 м2)
- •Принцип работы канальной сплит-системы с приточной вентиляцией.
- •3.4.Сплит-системы кассетного типа (40 – 150 м2)
- •3.5.Напольно-потолочные сплит-системы (40 – 150 м2)
- •3.6.Сплит-система колонного типа (80 –180 м2)
- •3.7.Мультизональные сплит-системы
- •4.Крышные кондиционеры
- •5.Центральный кондиционер
- •6.Прецизионные кондиционеры
- •Функции кондиционеров Основные режимы работы кондиционера
- •Дополнительные режимы работы кондиционера
- •Есть ли у кондиционера возможность притока свежего воздуха?
- •Упрощенная методика расчета мощности кондиционера
- •Монтаж кондиционеров
- •Уровень шума кондиционеров
- •Причины выхода кондиционера из строя
- •Бренды, поставляемые компанией русклимат
- •Три сестры: fujitsu – fuji – general
- •Обзор рынка кондиционеров. Конкуренты
Компрессионный цикл охлаждения холодильной машины. (Теория)
Компрессионный цикл охлаждения состоит из четырех основных элементов:
Компрессора
Испарителя
Конденсатора
Регулятора потока
Эти основные элементы соединены трубопроводами в замкнутую систему, по которой циркулирует хладагент (обычно это фреон). Компрессор производит циркуляцию хладагента и поддерживает высокое давление (20-23 атм.) в конденсаторе.
Основные элементы цикла охлаждения
- На выходе из испарителя хладагент - это пар при низкой температуре и низком давлении.
- Затем компрессор всасывает хладагент, давление повышается до примерно 20 атм., а температура достигает 70 – 90оС.
- После этого горячий пар хладагента попадает в конденсатор, где он охлаждается и конденсируется. Для охлаждения используется вода или воздух. На выходе из конденсатора хладагент представляет собой жидкость под высоким давлением. Внутри конденсатора пар должен полностью перейти в жидкое состояние. Для этого температура жидкости, выходящей из конденсатора, на несколько градусов (обычно 4-6°С) ниже температуры конденсации при данном давлении.
- Затем хладагент (имеющий в этот момент жидкое агрегатное состояние при высоких давлении и температуре) поступает в регулятор потока.
Здесь давление резко падает, и происходит частичное испарение.
- На вход испарителя попадает смесь пара и жидкости. В испарителе жидкость должна полностью перейти в парообразное состояние. Поэтому температура пара на выходе из испарителя немного выше температуры кипения при данном давлении (обычно на 5-8оС). Это необходимо, чтобы в компрессор не попали даже мелкие капли жидкого хладагента, иначе компрессор может быть поврежден.
- Образовавшийся в испарителе перегретый пар выходит из него, и цикл возобновляется сначала.
Итак, ограниченное количество хладагента постоянно циркулирует в холодильной машине, меняя агрегатное состояние при периодически изменяющихся температуре и давлении.
В каждом цикле имеется два определенных уровня давления. На стороне высокого давления происходит конденсация хладагента и находится конденсатор. На стороне низкого давления находится испаритель и жидкий хладагент превращается в пар. Граница между областями высокого и низкого давления проходит в двух точках - на выходе из компрессора (нагнетательный клапан) и на выходе из регулятора потока.
Энтальпия хладагента (необязательно рассказывать клиенту)
Описанный выше цикл охлаждения удобно изображать графически. На диаграмме показано соотношение давления и теплосодержания (энтальпии) хладагента.
Энтальпия - это функция состояния, приращение которой при процессе с постоянным давлением равно теплоте, полученной системой.
На диаграмме показана кривая насыщения хладагента.
- Левая ветвь кривой соответствует насыщенной жидкости
- Правая часть соответствует насыщенному пару.
- В критической точке ветви кривой соединяются, и вещество может находиться и в жидком, и в газообразном состоянии.
- Внутри кривой - зона, соответствующая смеси пара и жидкости.
- Слева от кривой (в области меньшей энтальпии) - переохлажденная жидкость.
- Справа от кривой (в области большей энтальпии) - перегретый пар.
Теоретический цикл охлаждения несколько отличается от реального. В действительности происходят потери давления на разных этапах перекачки хладагента, снижающие эффективность охлаждения. Это не учитывается в идеальном цикле
