
- •Базовые понятия
- •Множества и операции над множествами
- •способы определения множеств
- •Функции
- •способы задания функций
- •последовательности и кортежи
- •Действительные числа
- •иерархия числовых множеств
- •определение действительных чисел
- •ограниченные множества
- •Вопросы для коллоквиума
- •Теория пределов
- •Предел последовательности
- •бесконечно малые, бесконечно большие величины, их иерархия
- •частичные пределы
- •Пределы и непрерывность функций
- •открытые и замкнутые множества
- •предел функции
- •непрерывность функции
- •монотонные функции
- •свойства непрерывных функций
- •элементарные функции
- •замечательные пределы
- •равномерная непрерывность
- •Вопросы для коллоквиума
- •Дифференциальное исчисление
- •Производная и дифференциал
- •производная
- •дифференциал
- •независимость формы первого дифференциала
- •дифференцируемость обратной функции
- •производные высших порядков
- •дифференциалы высших порядков
- •Основные теоремы о дифференцируемых функциях
- •теоремы о среднем значении
- •правило Лопиталя
- •теоремы о монотонных функциях
- •формула Тейлора
- •Исследование функций
- •экстремумы
- •наибольшее и наименьшее значение
- •выпуклость и точки перегиба
- •асимптоты
- •построение эскизов графиков
- •Введение в дифференциальную геометрию
- •путь и кривая
- •параметрическое дифференцирование
- •кривизна простой кривой
- •Частные производные
- •частная производная и дифференцируемость
- •геометрический смысл дифференциала, касательная плоскость
- •дифференцирование сложной функции и независимость формы первого дифференциала
- •производная по направлению, градиент
- •независимость производной от порядка дифференцирования
- •дифференциалы высших порядков
- •формула Тейлора
- •Экстремумы функции нескольких переменных
- •Неявные функции
- •основные теоремы о неявных функциях
- •Условный экстремум
- •Вопросы для коллоквиума
- •Интегральное исчисление
- •Неопределенный интеграл
- •определение и свойства первообразной
- •интегрирование рациональных дробей
- •интегрирование некоторых иррациональностей
- •интегрирование биномиальных дифференциалов
- •интегрирование тригонометрических выражений
- •некоторые интегралы, невычислимые в элементарных функциях
- •Определенный интеграл
- •интеграл Римана
- •суммы Дарбу
- •свойства интеграла Римана
- •связь определенного и неопределенного интегралов
- •методы интегрирования
- •формула Бонэ
- •неравенства Гёльдера и Минковского
- •Введение в теорию меры
- •мера Жордана на плоскости
- •мера Лебега
- •Приложения определенного интеграла
- •вычисление площадей
- •площадь в полярных координатах
- •длина дуги гладкой кривой
- •вычисление объемов и поверхностей тел вращения
- •Несобственные интегралы
- •определение н.и.
- •виды и признаки сходимости н.и.
- •Интегралы с параметрами
- •предел функции по параметру
- •собственные интегралы с параметром
- •равномерная сходимость н.и.
- •непрерывность и дифференцируемость н.и.
- •вычисление н.и. дифференцированием по параметру
- •интегрирование н.и. по параметру
- •интеграл Пуассона
- •функции Эйлера
- •Вопросы для коллоквиума
- •Некоторые виды интегралов
- •Кратные интегралы
- •интеграл Римана от функции нескольких переменных
- •свойства интеграла Римана
- •вычисление двойного интеграла
- •вычисление тройного интеграла
- •Криволинейные интегралы
- •свойства к.и. 1-го рода
- •вычисление к.и. 1-го рода
- •к.и. 2-го рода
- •свойства к.и. 2-го рода
- •вычисление к.и. 2-го рода
- •формула Грина
- •независимость криволинейного интеграла от пути
- •криволинейные координаты
- •Поверхностные интегралы
- •поверхность, площадь поверхности
- •вычисление п.и. 1-го рода
- •ориентированные поверхности
- •формула Стокса
- •Элементы теории поля
- •Вопросы для коллоквиума
- •Основы теории рядов
- •Числовые ряды
- •основные свойства рядов
- •ряды с неотрицательными членами
- •дальнейшие свойства произвольных рядов
- •признаки Абеля и Дирихле
- •Функциональные ряды
- •равномерная сходимость рядов
- •интегрирование и дифференцирование рядов
- •признаки равномерной сходимости
- •Степенные ряды
- •Основы ТФКП
- •Комплексная переменная и функции от нее
- •комплексные числа и действия над ними
- •пределы комплексных последовательностей
- •функции к.п.
- •дифференцирование ф.к.п.
- •интегралы от ф.к.п., формула Коши
- •аналитические функции
- •степенной ряд, круг сходимости
- •единственность а.ф.
- •аналитическое продолжение
- •элементарные функции
- •Ряд Лорана
- •Вычеты
- •Конформные отображения

4.3. ВВЕДЕНИЕ В ТЕОРИЮ МЕРЫ |
55 |
Замечание. Аналогично доказывается соответствующее неравенство Минковского для сумм:
n |
|xk + yk|p!1/p |
6 |
n |
|xk|p!1/p + |
n |
|yk|p!1/p . |
kX |
|
|
X |
|
X |
|
=1 |
|
|
k=1 |
|
k=1 |
|
При p = q = 2 получаем неравенство треугольника для случая евклидовой метрики на Rn .
4.3Введение в теорию меры
4.3.1мера Жордана на плоскости
Определение . Ячейкой на плоскости (и в Rn ) называется прямое произведение промежутков (прямоугольник). Ячейки называются перекрывающимися, если их внутренности пересекаются, касающимися, если они имеют общие граничные точки, но не имеют общих внутренних точек.
Определение . Мерой (Жордана) ячейки |
= ha; bi × hc; di называется число |
||||
mes |
= (b − a)(d − c) . |
|
|
||
Определение . Покрытием множества X R2 |
называется конечный набор |
||||
ячеек |
1, . . . , k , в объединении которых содержится X . |
||||
Определение. Внешней мерой Жордана ограниченного множества X называ- |
|||||
ется число |
X mes |
|
|||
|
|
|
X = inf |
i, |
|
|
mes |
||||
|
|
|
S |
|
|
ii X i
где inf берется по всем покрытиям множества X . Внутренней мерой Жордана множества X называется число
X
mes X = sup mes i,
S
ii X i
где сумма берется по всем конечным наборам попарно неперекрывающихся(!) ячеек. Ограниченное множество X называется измеримым по Жордану или
квадрируемым (в случае Rn, n > 3, — кубируемым), если mes X = mes X . В этом случае общее значение внутренней и внешней мер обозначается mes X .
Некоторые свойства меры Жордана.
) mes X 6 mes X
) mes X > 0
) если X1 ∩ X2 = и оба множества измеримы, то mes(X1 X2) = mes X1 + + mes X2
http://rishelie.by.ru/files/Math/Work/mathan.pdf c Н. И. Казимиров