- •§ 1. Кинематика сплошной среды
- •§ 2. Элементы теории деформаций
- •О скоростях деформаций
- •§ 3. Динамические величины и элементы теории напряжений
- •§ 4. Источник и сток в пространстве.
- •Тензоры
- •§ 1. Тензорная алгебра
- •§ 1. Уравнение неразрывности
- •§ 2. Уравнения движения и равновесия
- •Уравнением моментов
- •§ 3. Уравнения состояния (математические модели)
- •§ 4. Уравнения состояния гидромеханики
- •§ 1. Линейные стационарные задачи фильтрации.
- •Jules Dupuit Существенный вклад в развитие теории напорного и безнапорного движения грунтовых вод внес (Boussinesq) Жозеф Валантен Буссинеск (1842-1929 гг.) и Филипп Форхгеймер (1852-1933 гг.).
- •§ 2. Основные уравнения теории фильтрации
- •§ 3 Линейные уравнения и граничные задачи фильтрации.
- •1. Модель ламинарной фильтрации ньютоновских однородных жидкостей в изотропной среде
- •5. Нелинейный закон фильтрации
- •Решение линейных стационарных задач фильтрации (формула дюпюи и ее обобщения)
- •1. Первая основная граничная задача фильтрации
- •Вторая основная граничная задача фильтрации
- •3. Третьая основная граничная задача фильтрации
- •Основной показатель
- •4. Четвертая основная граничная задача фильтрации
- •5. Плоская фильтрация в вертикально-трещиноватом пласте
- •6. Определение расхода в неоднородном анизотропном пласте
- •7. Несовершенное вскрытие пластов
- •§ 5. Общие задачи механики деформируемого твердого тела в бурении и разработке нефтяных и газовых месторождений
- •§ 6. Мгновенные уравнения состояния и критерии прочности
- •§ 8. Общая система уравнений механики деформируемого твердого тела
- •Задачи гидромеханики в бурении
- •§ 1. Базовые задачи гидродинамики при промывке и цементировании скважин
- •§ 2. Ламинарное и турбулентное течение жидкостей в щелевом канале
- •§ 3. Ламинарное и турбулентное течение жидкостей в кольцевом канале
§ 8. Общая система уравнений механики деформируемого твердого тела
Получить аналитическое решение задачи механики деформируемого твердого тела – значит определить прежде всего компоненты вектора перемещения , тензоров деформаций и напряжения в любой точке области D, занятой телом, и в любой момент времени.
В общем случае, как показано ранее, 15 искомых функций должны удовлетворять следующим 15 уравнениям.
Трем уравнениям движения [см. формулу (2.9)]
. (2.98)
Шести уравнениям механического состояния
(2.99)
соответственно при упругой деформации изотропного тела [см. формулу (2.74)]; при упругопластической деформации изотропного тела [см. формулу (2.77)]; при ползучести среды [см. формулу (2.91)]. Возможны уравнения другого вида, связывающие компоненты и , в зависимости от рассматриваемого состояния тела и действующих факторов.
Шести уравнениям совместимости (неразрывности) деформаций Сен-Венана [см. формулу (1.24)]
(2.100)
и т.д. (остальные уравнения получаются круговой заменой индексов) при рассмотрении кратковременного напряженно-деформированного состояния тела. При изучении ползучести тела используются шесть аналогичных уравнений совместимости скоростей деформаций .
В
уравнениях (2.98) – (2.100) использована
декартова система координат
и следующие введенные ранее обозначения:
- проекции массовых сил и ускорения;
-
плотность тела;
- модуль сдвига;
- коэффициент Ламе;
- модуль объемного сжатия; Е,
v
– модуль Юнга и коэффициент Пуассона;
и
- модули пластичности и ползучести,
являющиеся соответственно функциями
интенсивности деформации сдвига Г и
интенсивности скорости деформации
сдвига Н (см. лекцию 1);
- компоненты девиатора деформации;
- объемная деформация;
- компоненты девиатора скорости
деформации;
- символ Кронекера:
где - скорость объемной деформации; и - компоненты тензоров деформаций и скоростей деформаций; связанные соответственно с компонентами перемещения и скорости соотношениями Коши:
(2.101)
При переходе к криволинейной системе координат вид всех уравнений, кроме уравнений (2.99), изменится. В лекции 1 приведены формулы перехода к цилиндрической системе координат.
Для однозначного определения напряженно-деформированного состояния тела к уравнениям (2.98) – (2.100) необходимо присоединить начальное и граничные условия. Различают три основные граничные задачи механики деформируемого твердого тела.
Если на поверхности S, ограничивающей область D тела, задан вектор напряжения , то граничные условия записываются в виде (см. лекцию 1)
(2.102)
где - нормаль к поверхности S; - проекции вектора на оси выбранной системы координат; М – точка поверхности; t – время.
В этом случае говорят о первой основной граничной задаче.
Если на поверхности S заданы условия для компонент вектора перемещения (или скорости )
(2.103)
то говорят о второй граничной задаче, где - известные функции точек поверхности и времени.
В том случае, когда на одной части поверхности S задано условие вида (2.102), а на другой – вида (2.103), говорят о третьей основной граничной задаче, иногда ее называют смешанной граничной задачей.
Отличительная особенность первой основной граничной задачи состоит в том, что ее решение в зависимости от удобства можно строить в перемещениях (скоростях) или в напряжениях. Вторую и третью граничные задачи можно решать только в перемещениях (скоростях).
Решить задачу в перемещениях – значит представить исходную систему уравнений, граничные и начальные условия через функции . Для этого достаточно подставить формулы (2.99) и (2.101) в уравнения (2.98) и граничные условия (2.102), полученная таким образом система трех уравнений и трех граничных условий будет содержать только перемещения . В этом случае надобность в уравнениях (2.100) отпадает. Они могут служить лишь для контроля полученного решения.
Если первая граничная задача решается в напряжениях , то эти функции, кроме уравнений (2.98), должны удовлетворять и системе уравнений (2.100), в которой необходимо (или ) выразить через с помощью формул (2.99).
Ясно, что вид и характер исходной системы уравнений зависит от вида соотношений (2.99). С различными частными системами таких уравнений можно познакомиться по справочной литературе, учебникам и монографиям. При решении конкретных задач мы будем получать эти уравнения в упрощенном виде.
Определение напряженно-деформированного состояния тела не может быть самоцелью. Оно лишь предпосылка для оценки прочности, устойчивости, долговечности тела, конструкции или сооружения.
Лекция 7. Основные задачи механики сплошных сред в бурении
