- •§ 1. Кинематика сплошной среды
- •§ 2. Элементы теории деформаций
- •О скоростях деформаций
- •§ 3. Динамические величины и элементы теории напряжений
- •§ 4. Источник и сток в пространстве.
- •Тензоры
- •§ 1. Тензорная алгебра
- •§ 1. Уравнение неразрывности
- •§ 2. Уравнения движения и равновесия
- •Уравнением моментов
- •§ 3. Уравнения состояния (математические модели)
- •§ 4. Уравнения состояния гидромеханики
- •§ 1. Линейные стационарные задачи фильтрации.
- •Jules Dupuit Существенный вклад в развитие теории напорного и безнапорного движения грунтовых вод внес (Boussinesq) Жозеф Валантен Буссинеск (1842-1929 гг.) и Филипп Форхгеймер (1852-1933 гг.).
- •§ 2. Основные уравнения теории фильтрации
- •§ 3 Линейные уравнения и граничные задачи фильтрации.
- •1. Модель ламинарной фильтрации ньютоновских однородных жидкостей в изотропной среде
- •5. Нелинейный закон фильтрации
- •Решение линейных стационарных задач фильтрации (формула дюпюи и ее обобщения)
- •1. Первая основная граничная задача фильтрации
- •Вторая основная граничная задача фильтрации
- •3. Третьая основная граничная задача фильтрации
- •Основной показатель
- •4. Четвертая основная граничная задача фильтрации
- •5. Плоская фильтрация в вертикально-трещиноватом пласте
- •6. Определение расхода в неоднородном анизотропном пласте
- •7. Несовершенное вскрытие пластов
- •§ 5. Общие задачи механики деформируемого твердого тела в бурении и разработке нефтяных и газовых месторождений
- •§ 6. Мгновенные уравнения состояния и критерии прочности
- •§ 8. Общая система уравнений механики деформируемого твердого тела
- •Задачи гидромеханики в бурении
- •§ 1. Базовые задачи гидродинамики при промывке и цементировании скважин
- •§ 2. Ламинарное и турбулентное течение жидкостей в щелевом канале
- •§ 3. Ламинарное и турбулентное течение жидкостей в кольцевом канале
§ 2. Основные уравнения теории фильтрации
На различных этапах строительства скважины возникает необходимость в решении задач, связанных с оттоком жидкости из скважины и притоком ее в скважину из пласта. Здесь основное значение имеют закономерности движения жидкости в пласте, основанные на решении соответствующих граничных задач теории фильтрации.
Фильтрация - это движение жидкостей, газов и их смесей под действием перепада давления в твердом проницаемом теле, пронизанном системой сообщающихся между собой пустот (поры, трещины).
Нефть и природные газы заключены в недрах Земли. Их скопления связаны с вмещающими горными породами (пластами) - пористыми и проницаемыми образованиями, имеющими непроницаемые кровлю и подошву. Горные породы, которые могут служить вместилищами нефти и газа и отдавать их при разработке, называются коллекторами. В свою очередь, коллекторы называют пористыми или трещиноватыми в зависимости от геометрии пустот.
Природные жидкости (нефть, газ, подземные воды и их смеси) находятся в пустотах (порах и трещинах) коллекторов. Часто находящиеся в пустотном пространстве пласта природные жидкости обозначают общим термином флюид, подразумевая под ним любую из них. Флюид, находящийся в коллекторе, может находиться в состоянии покоя или двигаться. Движение флюидов через твердые (вообще говоря, деформируемые) трещиноватые или пористые среды называется фильтрацией. Фильтрация может быть обусловлена воздействием различных сил: градиентом давления, концентрации, температуры, капиллярными, электромолекулярными и другими силами. Например, движение (фильтрация) расплавленного жира в фитиле свечи или керосина в фитиле керосиновой лампы обусловлено капиллярными силами. Однако в дальнейшем будем рассмотривать течения, вызываемые действием градиента давления или силы тяжести.
Поровое пространство осадочных горных пород - сложная система сообщающихся межзернистых пустот, в которой трудно выделить отдельные поровые каналы (рис. 1.1). Размеры пор, например, в песчаных породах составляют обычно единицы или десятки микрометров (мкм). Движение флюидов в пласте происходит с очень малыми скоростями, порядка микрометров в секунду (в гидромеханике движения со столь малыми скоростями часто называются ползущими).
Рис.
3.1. Шлиф нефтяного песчаника
Поэтому процесс фильтрации с высокой степенью точности можно очень часто считать изотермическим. И в то же время при фильтрации в горных породах возникает значительная сила трения. При движении флюидов в пустотном пространстве коллектора соприкосновение между твердым скелетом и жидкостью происходит по огромной поверхности. Например, в 1м3 пористой среды (песчаника) площадь поверхности пустотного пространства может достигать порядка 104 м2. Поэтому основным свойством флюида, которое влияет на фильтрацию, является вязкость. В связи с этим обстоятельством вязкость учитывается даже при фильтрации газа, а так как сила трения распределена по всему объему коллектора, то Н.Е. Жуковский предложил при описании фильтрации силу трения считать массовой силой.
Строение нефтяных и газовых залежей осложняется значительной неоднородностью и анизотропией свойств пород, их слоистостью, наличием тектонических и стратиграфических нарушений (разрывов сплошности породы). Разведка месторождений, исследование пластов, извлечение нефти и газа осуществляется через отдельные скважины диаметром 10-20 см, отстоящие друг от друга до сотни метров.
Объектом изучения в теории фильтрации является движущаяся жидкость (газ, смесь), а скелет тела – средой, в которой это движение происходит.
Основная характеристика фильтрационного движения – вектор скорости фильтрации
|
(2.28) |
где
– компоненты скорости фильтрации;
– расход жидкости через элементарные
площадки
,
проходящие через некоторую точку
среды
перпендикулярно к соответствующим
координатным осям. Если через точку
проведена
произвольно ориентированная площадка
,
то проекция вектора
на нормаль к площадке
равна
|
(2.29) |
где
– направляющие косинусы нормали
;
– расход жидкости через площадку
.
Подчеркнем,
что расходы в формулах (2.28) и (2.29) делятся
на полную площадь
,
а не на ее часть, занятую жидкостью.
Поэтому величина скорости фильтрации
не равна истинной скорости движения
жидкости
,
они связаны соотношением
|
|
где
– активная, или динамическая, пористость;
и
– соответственно элементарный объем
среды и ее части, занятых подвижной
жидкостью.
Горные породы, слагающие проницаемые пласты, характеризуются, как правило, сложной структурой флюидосодержащего пространства. Помимо пор они могут обладать развитой системой микро- и макротрещин. В зависимости от степени влияния трещин на фильтрацию жидкости принято различать пористые, трещиноватые и трещиновато-пористые породы.
Каждая
из этих пород описывается некоторым
конечным набором осредненных геометрических
характеристик. Важнейшими из них являются
пористость
и, аналогично, трещинная пористость
.
Для пористых пород зависит от формы, размеров и взаимного расположения твердых частиц. Из чисто геометрического рассмотрения фиктивного грунта, состоящего из одинаковых шарообразных частиц, Слихтер установил, что не зависит от их диаметра, а зависит только от их упаковки. Эта теоретическая пористость укладывается в диапазоне 0,26 – 0,47. Диапазон изменения пористости реальных тел намного шире.
Наряду
с пористостью для описания пористого
тела используют:
просветность
,
эффективные диаметры
частиц
и пор
.
Просветностью
называется отношение площади пор ко
всей площади сечения, проведенную через
данную точку тела.
Диапазон изменения теоретической
просветности, по Слихтеру, равен 0,093 –
0,214. Параметры
и
определяются по анализу фракционного
состава частиц или микроструктуры пор
и их кривых распределения.
Основными геометрическими параметрами трещиноватости являются: раскрытие трещин – расстояние между стенками;
объемная плотность трещиноватости – отношение площади поверхности всех трещин в некотором элементарном объеме к величине этого объема; поверхностная плотность трещиноватости – отношение суммы длин следов трещин, выходящих на элементарную площадку, к величине площади последней;
густота трещин - отношение количества трещин, секущих нормаль плоскостей, к элементу длины этой нормали;
ориентация трещин - в пространстве.
Пористые и трещиноватые породы с хаотичным, бессистемным распределением пор или трещин характеризуются изотропией фильтрационных свойств, в то время как породы с упорядоченной системой (большинство трещинных коллекторов) обладают ярко выраженной анизотропией.
Особенностью фильтрации в трещиновато-пористых породах является то, что закономерности фильтрации в порах и трещинах могут существенно отличаться.
Все
это находит отражение в основном
соотношении
теории фильтрации – законе
фильтрации,
который устанавливает связь между
вектором скорости
и полем давления
.
Существуют по крайней мере три основных фактора, которые влияют на характер (линейный, нелинейный) закона фильтрации: режим фильтрации (ламинарный, турбулентный), реологические свойства (ньютоновская, неньютоновская) и однородность жидкости.

,
,
,