Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Osnovy_nauchnykh_issledovany_metod_rekomend_20.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
788.99 Кб
Скачать

III. Вспомогательные (статистические, математические) методы психолого-педагогического исследования

Имеются три главных раздела статистики: описательная статистика, индуктивная статистика, измерение корреляции.

Описательная статистика направлена на то, чтобы описывать, подытоживать и воспроизводить в виде таблиц или графиков данные того или иного распределения, вычислять среднее для данного распределения, его размах и дисперсию.

Индуктивная статистика необходима тогда, когда требуется проверить, можно ли распространить результаты, полученные на данной выборке, на всю популяцию, из которой взята эта выборка. То есть, до какой степени можно путем индукции обобщить на большее число объектов ту или иную закономерность, обнаруженную при изучении ограниченной группы в ходе какого-либо наблюдения или эксперимента. Следовательно, индуктивная статистика необходима после получения эмпирических данных, на этапе обобщения и конструирования выводов.

Тот раздел статистики, в котором даются правила измерения корреляции, необходимо применять с целью изучения степени связи между собой двух переменных с тем, чтобы можно было предсказывать возможные значения одной из них, если известна другая. Степень корреляции значений двух переменных может быть вычислена двумя способами: с применением параметрических и с помощью непараметрических методов (тестов):

  1. Выявление различий в уровне исследуемого признака (сопоставления и сравнения).

    1. Q - критерий Розенбаума.

Назначение критерия. Критерий используется для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

Описание критерия. Критерий применяется в тех случаях, когда данные представлены по крайней мере в порядковой шкале. Признак должен варьировать в каком-то диапазоне значений, иначе сопоставления с помощью Q-критерия просто невозможны. Например, если у нас только 3 значения признака, 1, 2 и 3, - нам очень трудно будет установить различия. Метод Розенбаума требует, следовательно, достаточно тонко измеренных признаков.

Гипотезы. Н0: Уровень признака в выборке 1 не превышает уровня признака в выборке 2. Н1: Уровень признака в выборке 1 превышает уровень признака в выборке 2.

Алгоритм подсчета критерия q Розенбаума

  1. Проверить, выполняются ли ограничения: n1, n2 ≥11, n1, n2≈n2.

  2. Упорядочить значения отдельно в каждой выборке по степени возрастания признака. Считать выборкой 1 ту выборку, значения в которой предположительно выше, а выборкой 2 - ту, где значения предположительно ниже.

3. Определить самое высокое (максимальное) значение в выборке 2.

4. Подсчитать количество значений в выборке 1, которые выше максимального значения в выборке 2. Обозначить полученную величину как S1.

5. Определить самое низкое (минимальное) значение в выборке 1.

6. Подсчитать количество значений в выборке 2, которые ниже минимального значения выборки 1. Обозначить полученную величину как S2.

7. Подсчитать эмпирическое значение Q по формуле: Q=S1+S2

8. По таблице определить критические значения Q для данных n1 и n2. Если Qэмп равно Q0,05 или превышает его, Н0 отвергается.

9. При n1,n2>26 сопоставить полученное эмпирическое значение с Qкp=8 (р≤0,05) и Qкp=10(p0,01). Если Qэмп превышает или по крайней мере равняется Qкp=8, H0 отвергается.

    1. U - критерий Манна-Уитни.

Назначение критерия. Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n1n23 или n1=2, n2≥5, и является более мощным, чем критерий Розенбаума.

Описание критерия. Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже. Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок . Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше Uэмп, тем более вероятно, что различия достоверны.

Гипотезы. Н0: Уровень признака в группе 2 не ниже уровня признака в группе 1. H1: Уровень признака в группе 2 ниже уровня признака в группе 1.

Ограничения критерия U.

1. В каждой выборке должно быть не менее 3 наблюдений: n1•n2≥3; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.

2. В каждой выборке должно быть не более 60 наблюдений; n1•n2≤60. Однако уже при n1•n2>20 ранжирование становиться достаточно трудоемким.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]