
- •Федеральное агентство по образованию
- •Проектирование цифровых измерительных устройств
- •Удк 621.317.7 (075) ббк 34.9я73
- •Удк 621.317.7 (075) ббк 34.9я73
- •Введение
- •1. Основные определения
- •Контрольные вопросы
- •2. Циу с квантованием по уровню
- •2.1. Вольтметр на основе времяимпульсного ацп однотактного интегрирования
- •2.2. Времяимпульсный вольтметр на основе ацп двухтактного интегрирования
- •2.3. Вольтметр на основе ацп - преобразования
- •2.4. Вольтметр частотно-импульсного преобразования с пнч
- •Пнч с заданным тактом (пнч зт)
- •Пнч с заданной амплитудой (пнч за)
- •Пнч с заданным интегралом непрямоугольного компенсирующего импульса (пнч зи)
- •2.5. Вольтметры уравновешивающего преобразования (кодоимпульсные вольтметры)
- •2.5.1. Вольтметр развертывающего уравновешивания с рсо
- •2.5.2. Вольтметр развертывающего уравновешивания с нсо
- •2.5.3. Вольтметры следящего уравновешивания
- •2.5.4. Вольтметр следящего уравновешивания с рсо
- •2.5.5. Вольтметр следящего уравновешивания с нсо
- •2.6. Вольтметр на основе ацп параллельного преобразования
- •2.7. Ацп конвейерного типа
- •2.8. Краткая информация об интегральных ацп
- •Контрольные вопросы
- •3. Циу с квантованием по времени
- •3.1. Цифровые частотомеры
- •3.1.1. Частотомер непрерывного преобразования
- •3.1.2. Цифровой частотомер средних значений
- •3.1.3. Цифровой частотомер номинальных значений
- •3.1.4. Цифровой процентный частотомер
- •3.2.1. Цифровой периодомер мгновенных значений
- •Цифровой периодомер мгновенных значений (цпмз) предназначен для реализации измерения за один период входного сигнала. Один из вариантов реализации структурной схемы цпмз приведен на рис. 3.6.
- •Порядок расчета структуры
- •3.2.2. Цифровой периодомер средних значений
- •3.3. Цифровые измерители длительности импульсов
- •3.3.1. Общие сведения о цифровых измерителях длительности импульсов
- •3.3.2. Расширение длительности импульсов
- •3.3.3. Использование нониусного метода для измерения длительности импульсов
- •3.3.4. Аналого-цифровой измеритель длительности одиночных импульсов
- •3.4. Цифровые фазометры
- •3.4.1. Цифровой фазометр мгновенных значений
- •Значение кванта или абсолютной погрешности квантования
- •Для расширения частотного диапазона цфмз используют два основных способа.
- •1. Применение гоч с управляемой выходной частотой, например, на базе умножителя частоты (уч) с петлей фапч.
- •2. Применение гоч с аналого-цифровым управлением
- •3.4.2. Цифровой фазометр средних значений
- •Контрольные вопросы
- •4. Измерение параметров элементов электрических цепей
- •4.1. Измерение емкости и индуктивности
- •4.2. Измерение добротности
- •5. Автоматическое переключение пределов измерения в циу
- •6. Циу пространственного преобразования
- •6.1. Циу линейных перемещений
- •6.1.1. Циу линейных перемещений контактного типа
- •6.1.2. Циу линейных перемещений с оптическим преобразователем
- •6.1.3. Числоимпульсный метод измерения перемещения
- •6.1.4. Измерители больших перемещений (расстояния)
- •6.1.5. Измерители угловых перемещений
- •Контрольные вопросы
- •7. Преобразователи код – напряжение
- •7.1. Пкн на основе управляемого делителя напряжения последовательного типа
- •7.2. Пкн на основе управляемого делителя напряжения параллельного типа
- •7.3. Пкн с суммированием напряжений на основе сетки резисторов
- •7.4. Пкн с суммированием токов
- •7.4.1. Пкн на основе матрицы резисторов с весовыми коэффициентами
- •7.4.2. Пкн на основе резистивной матрицы r-2r
- •7.5. Краткая информация об интегральных цап
- •Контрольные вопросы
- •8. Устройства индикации цифровых приборов
- •Индикаторные панели
- •9. Интерфейсы связи цифровых приборов с эвм и другими циу
- •9.1. Применение последовательного интерфейса rs232
- •9.2. Применение параллельного интерфейса ieee1284
- •9.3. Применение однопроводной шины dallas
- •9.4. Применение двухпроводной шины i2c
- •Контрольные вопросы
- •10. Элементы микропроцессорной техники в циу
- •10.1. Общие сведения о микроконтроллерах семейства piCmicro
- •Ядро микроконтроллера
- •Порты ввода-вывода
- •Периферийные модули
- •10.2. Примеры применения микроконтроллеров piCmicro
- •10.2.1. Устройство управления четырьмя светодиодами
- •10.2.2. Управление жки с помощью последовательного адаптера
- •10.3. Общие сведения о микроконтроллерах семейства avr
- •10.4. Примеры применения микроконтроллеров avr
- •10.4.1. Ик дальномер
- •Библиографический список
- •Оглавление
Контрольные вопросы
Как выполняется подтверждение приёма данных в шине I2C?
Какой сигнал является сигналом квитирования "разрешено начало/завершение цикла обмена" при работе LPT порта в режиме ЕРР?
Для чего служит сигнал ReverseRequest# = 0 при работе LPT порта в режиме ЕСР?
Какой из режимов работы LPT порта позволяет обеспечить максимальную скорость обмена данными между ЭВМ и периферийным устройством?
Сколько линий достаточно для обмена данными между ЭВМ и микроконтроллером посредством интерфейса RS232 при использовании режима с частичным квитированием (общий провод не учитывать)?
Укажите правильную последовательность доступа к однопроводной шине DALLAS.
Укажите правильную последовательность инициализации при работе с однопроводной шиной DALLAS.
Как формируется сигнал START при использовании шины I2C?
Как формируется сигнал STOP при использовании шины I2C?
Какие задачи совместимости и сопряжения модулей прибора или системы решает интерфейс?
Какой из режимов работы интерфейса RS232 может использоваться в режиме работы по прерыванию?
10. Элементы микропроцессорной техники в циу
В настоящее время широкое распространение в электронных устройствах самого различного назначения нашли микроконтроллеры (МК). Микроконтроллеры объединяют все передовые технологии микропроцессорной техники: использование электрически однократно и многократно программируемого пользователем ППЗУ, минимальное энергопотребление, исключительную производительность, RISC и CISC архитектуру и минимальные размеры корпуса. Эти широкие возможности и низкая стоимость сделали МК лучшим выбором для инженерных применений. Использовать микроконтроллеры рекомендуется во всех случаях, когда критично энергопотребление, габариты и стоимость устройства.
Мировыми лидерами в производстве микроконтроллеров являются корпорации: Microchip, выпускающая МК семейства PIC, и Atmel, выпускающая МК семейства AVR и MCS-51. Семейство MCS-51, реализующее архитектуру процессора XA, стало, по сути дела, прародителем семейств PIC и AVR микроконтроллеров, выполненных по гарвардской архитектуре процессора.
В гарвардской архитектуре разделена память программ и память данных. Обращение к памяти происходит по отдельным шинам адреса и данных, что значительно повышает производительность процессора по сравнению с традиционной архитектурой.
В микроконтроллерах с традиционной архитектурой ядра команды и данные запрашиваются по одной и той же шине. Чтобы выполнить выборку команды, необходимо сделать несколько запросов по 8-разрядной (или кратной 8 разрядам) шине. Затем (если необходимо) запросить данные, выполнить команду и сохранить результат. Как может быть замечено, шина с традиционной архитектурой ядра значительно загружена.
В последние годы, ввиду высоких требований к быстродействию МК при условии их низкой стоимости и энергопотребления, разработки на основе MCS-51 МК выполняются несколько реже по сравнению с разработками на PIC и AVR микроконтроллерах. Поэтому в данной главе пособия будут рассмотрены основные особенности и применение именно PIC и AVR МК.