- •Оглавление
- •Глава 1. Введение ……………………………………………………………………...
- •Глава 2. Физика макромолекул …………………………………………………………
- •Глава 3. Физика белка …………………………………………………………………...
- •Глава 4. Физика ферментов ……………………………………………………………..
- •Глава 5. Физика нуклеиновых кислот ………………………………………………….
- •Глава 6. Регуляция генной активности …………………………………………………
- •Предисловие
- •Глава 1. Введение.
- •1.1. Физика и биология
- •1. На атомно-молекулярном уровне с одной стороны,
- •2. И как целостных систем с другой.
- •1.2. Молекулярная биофизика и её задачи
- •1.3. Методы, используемые в молекулярной биофизике
- •Глава 2. Физика макромолекул.
- •2.1. Элементы стереохимии и поворотно-изомерная теория макромолекул
- •Изотактический полистирол Синдиотактический полистирол
- •Начала термодинамики
- •2.2. Внутреннее вращение и поворотная изомерия
- •2.3. Конформационная теория макромолекул
- •2.4. Поворотно-изомерная теория макромолекул
- •2.5. Объемные взаимодействия и переходы глобула-клубок в полимерных макромолекулах
- •Клубок и глобула
- •Переходы клубок-глобула
- •Замечания к разделу
- •2.6. Упругость полимерной цепи с исключенным объемом
- •2.7. Осмотическое давление полимерного раствора
- •2.8. Статистика линейных полимеров
- •Фракционирование полимеров
- •Глава 3. Физика белка.
- •3.1. Общая характеристика белков
- •3.2. Функции белков
- •3.3. Аминокислоты
- •3.4. Первичная структура
- •3.5. Вторичная структура
- •3.6. Третичная структура
- •3.7. Четвертичная структура
- •3.8. Физико-химические свойства белков
- •3.9. Простые и сложные белки
- •3.10. Химические реакции пептидов
- •3.11. Кислотно-основные свойства белков
- •3.12. Осаждение белков в виде солей
- •3.13. Растворимость белков
- •3.14. Растворы высокомолекулярных соединений
- •3.15. Влияние растворителя на растворимость белка
- •3.16. Влияние температуры на растворимость белка
- •3.17. Осмос и мембранное равновесие белков
- •3.18.Термодинамическое сродство полимера и растворителя
- •3.19. Диффузия
- •3.20. Характеристическая вязкость
- •3.21. Седиментация
- •3.22. Электрофоретическая подвижность
- •3.23. Конформационные переходы у пептидов
- •3.24. Метод Линдерштрема и Ланга
- •3.25. Метод измерения удельного вращения плоскости поляризации света
- •3.26. Поглощение света
- •3.27. Спектроскопия в инфракрасной области
- •3.28. Дисперсия оптической активности
- •3.29. Переходы “спираль-клубок”
- •3.30. Денатурация глобулярных белков
- •3.31. Метод Тенфорда определения разности свободной энергии денатурированного и нативного белка по денатурации в растворе мочевины
- •3.32. Калориметрические измерения денатурационных изменений в белках
- •Миоглобин
- •Гемоглобин
- •Транспорт газов
- •Гуморальный иммунитет гаммаглобулины
- •Классы иммуноглобулинов
- •Синтез иммуноглобулинов
- •Строение толстых и тонких нитей мышечного волокна
- •Элементарный акт мышечного сокращения
- •Рабочий цикл актомиозинового комплекса
- •Кооперативная и "индивидуальная трудовая деятельность" миозина
- •Глава 4. Физика ферментов.
- •4.1. Общая характеристика действия ферментов (определения)
- •4.2. Химическая кинетика и катализ
- •Катализ
- •4.3. Кинетика простых ферментативных реакций
- •4.4. Химические аспекты действия ферментов
- •4.5. Конформационные свойства ферментов
- •4.6. Физика фермент-субстратного взаимодействия
- •4.7. Электронно-конформационные взаимодействия
- •4.8. Ферментативная активность лизоцима
- •Глава 5. Физика нуклеиновых кислот.
- •5.1. Основная характеристика
- •5.2. Первичная структура
- •5.3. Состав днк
- •5.4. Состав рнк
- •5.5. Вторичная структура нуклеиновых кислот
- •5.6. Природа межнуклеотидных связей
- •5.7. Межнуклеотидная связь в днк
- •5.8. Конформационный анализ днк
- •5.9. Необычные структуры днк
- •5.10. Физические модели днк
- •5.11. Третичная структура днк
- •5.12. Межнуклеотидная связь в рнк
- •5.13. Макромолекулярная структура тРнк
- •5.14. Физико-химические свойства днк
- •Вязкость
- •Оптические свойства
- •5.15. Денатурация и ренатурация
- •5.16. Кинетика расплетания двойной спирали
- •5.17. Термодинамика плавления двойной спирали (переходов спираль - клубок)
- •5.18. Процессинг днк и рнк
- •5.19. Репликация
- •5.20. Транскрипция
- •5.21. Синтез белка
- •Глава 6. Регуляция генной активности.
- •6.1. Генетический код
- •6.2. Транспортные рнк и супрессия
- •6.3. Регуляция активности генов
- •Приложение жидкокристаллические формы нуклеиновых кислот
- •Конденсированное состояние высокомолекулярных двухцепочечных днк
- •Жидкокристаллическое состояние низкомолекулярных двухцепочечных днк
- •Жидкокристаллические дисперсии двухцепочечных днк
- •Жидкокристаллическое состояние днк в биологических системах
- •Практическое применение частиц жидкокристаллических дисперсий днк
- •Первые молекулярные моторы на основе днк
- •Новый метод хранения днк
- •Первый самособираемый нанотранзистор на днк основе
- •Жидкая форма днк
- •Сверхпроводимость днк
- •Рекомендуемая литература
Глава 5. Физика нуклеиновых кислот.
5.1. Основная характеристика
Нуклеиновые кислоты - это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их называют также полинуклеотидами. Важнейшей характеристикой нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида - структурного звена нуклеиновых кислот - входят три составные части:
азотистое основание - пиримидиновое или пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов. Азот, содержащийся в кольцах, придает молекулам основные свойства.
Строение пуриновых оснований:
Строение пиримидиновых оснований:
моносахарид - рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу.
Строение моносахаридов:
остаток фосфорной кислоты. Нуклеиновые кислоты являются кислотами потому, что в их молекулах содержится фосфорная кислота.
В конце 40-х — начале 50-х годов, когда появились такие методы исследования, как хроматография на бумаге и УФ-спектроскопия, были проведены многочисленные исследования нуклеотидного состава НК (Чаргафф, А. Н. Белозерский). Полученные данные позволили решительно отбросить старые представления о нуклеиновых кислотах, как о полимерах, содержащих повторяющиеся тетрануклеотидные последовательности (так называемая тетрануклеотидная теория строения ПК, господствовавшая в 30—40-е годы), и подготовили почву для создания современных представлений не только о первичной структуре ДНК и РНК, но и об их макромолекулярной структуре и функциях.
Метод определения состава НК основан на анализе гидролизатов, образующихся при их ферментативном или химическом расщеплении. Обычно используются три способа химического расщепления НК. Кислотный гидролиз в жестких условиях (70%-ная хлорная кислота, 100°С, 1 ч или 100%-ная муравьиная кислота, 175°C, 2 ч), применяемый для анализа как ДНК, так и РНК, приводит к разрыву всех N-гликозидных связей и образованию смеси пуриновых и пиримидиновых оснований. При исследовании РНК могут использоваться как мягкий кислотный гидролиз (1 н соляная кислота, 100°C, 1 ч), в результате которого образуются пуриновые основания и пиримидиновые нуклеозид-2'(3')-фосфаты, так и щелочной гидролиз (0,3 н. едкое кали, 37°С, 20 ч), дающий смесь нуклеозид -2' (3') -фосфатов.
Поскольку в НК число нуклеотидов каждого вида равно числу соответствующих оснований, для установления нуклеотидного состава данной НК достаточно определить количественное соотношение оснований. Для этой цели из гидролизатов с помощью хроматографии на бумаге или электрофореза (когда в результате гидролиза получают нуклеотиды) выделяют индивидуальные соединения. Каждое основание независимо от того, связано оно с углеводным фрагментом или нет, обладает характерным максимумом поглощения в УФ, интенсивность которого зависит от концентрации. По этой причине, исходя из УФ-спектров выделенных соединений, можно определить количественное соотношение оснований, а следовательно, и нуклеотидный состав исходной НК.
При количественном определении минорных нуклеотидов, особенно таких неустойчивых, как дигидроуридиловая кислота, пользуются ферментативными методами гидролиза (ФДЭ змеиного яда и селезенки).
Использование описанных выше аналитических приемов показало, что НК различного происхождения состоят за редким исключением из четырех основных нуклеотидов и что содержание минорных нуклеотидов может меняться в значительных пределах.
Как будет показано далее, при изучении нуклеотидного состава ДНК были получены данные, которые помогли установить ее пространственную структуру.
Нуклеиновые кислоты, полинуклеотиды, важнейшие биологически активные биополимеры, имеющие универсальное распространение в живой природе. Содержатся в каждой клетке всех организмов. НК были открыты в 1868 швейцарским учёным Ф. Мишером в клеточных ядрах (отсюда название: лат. nucleus - ядро), выделенных из гноя, а также из спермы лосося. Позднее нуклеиновые кислоты были обнаружены не только в ядре, но и в цитоплазме. Различают два главных типа нуклеиновых кислот - дезоксирибонуклеиновые кислоты, или ДНК, содержащиеся преимущественно в ядрах клеток, и рибонуклеиновые кислоты, или РНК, находящиеся главным образом в цитоплазме.
Молекулы нуклеиновых кислот - длинные полимерные цепочки с молекулярной массой 2,5 104 – 4 109, построенные из мономерных молекул - нуклеотидов так, что гидроксильные группы у 3' и 5' углеродных атомов углевода соседних нуклеотидов связаны остатком фосфорной кислоты. В состав РНК в качестве углевода входит рибоза, а азотистые компоненты представлены аденином, гуанином (пуриновые основания), урацилом и цитозином (пиримидиновые основания). В ДНК углеводным компонентом является дезоксирибоза, а урацил заменен тимином (5-метилурацилом). Фосфат и сахар составляют неспецифическую часть в молекуле нуклеотида, а пуриновое или пиримидиновое основание - специфическую. В составе большинства нуклеиновых кислот обнаружены в небольших количествах также некоторые другие (главным образом метилированные) производные пуринов и пиримидинов - т. н. минорные основания.
Нуклеиновые кислоты имеют различающийся состав. В частности, дезоксирибонуклеиновые кислоты (ДНК) содержат дезоксирибозу, а рибонуклеиновые кислоты (РНК) - рибозу. Эти и другие отличия в составе нуклеиновых кислот приведены в таблице:
Одинаковые компоненты |
Отличающиеся компоненты |
|
ДНК |
РНК |
|
АДЕНИН ГУАНИН ЦИТОЗИН |
ДЕЗОКСИРИБОЗА ТИМИН |
РИБОЗА УРАЦИЛ |
Цепи нуклеиновых кислот содержат от нескольких десятков до многих тысяч нуклеотидных остатков, расположенных линейно в определённой последовательности, уникальной для данной нуклеиновой кислоты. Т.е., как РНК, так и ДНК представлены огромным множеством индивидуальных соединений. Линейная последовательность нуклеотидов определяет первичную структуру нуклеиновых кислот. Вторичная структура нуклеиновых кислот возникает в результате сближения определённых пар оснований, а именно: гуанина с цитозином и аденина с урацилом (или тимином) по принципу комплементарности за счёт водородных связей, а также гидрофобных взаимодействий между ними.
Биологическая роль нуклеиновых кислот заключается в хранении, реализации и передаче наследственной информации, "записанной" в молекулах нуклеиновых кислот в виде последовательности нуклеотидов - т. н. генетического кода. При делении клеток - митозе - происходит самокопирование ДНК - её репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (транскрипция) и последующего биосинтеза белков с участием разных типов РНК (трансляция).
Исследование строения и функций нуклеиновых кислот в 50-70-х гг. 20 в. обусловило огромные успехи молекулярной генетики и молекулярной биологии. Важнейшим этапом в изучении химии и биологии НК было создание в 1953 Дж. Уотсоном и Ф. Криком модели ДНК (двойная спираль), что позволило объяснить многие её свойства и биологические функции. Нуклеиновые кислоты обнаружены также в клеточных органеллах (хлоропластах, митохондриях и др.), где функции их изучаются. Сравнительный анализ нуклеиновых кислот в разных группах организмов играет важную роль при решении вопросов систематики и эволюции. Каждый вид организмов содержит специфичные нуклеиновые кислоты (как РНК, так и ДНК). Степень сходства в строении нуклеиновых кислот указывает на уровень филогенетической близости организмов.
Нуклеозиды - соединения азотистого основания и углеводов (рибозы и дезоксирибозы). Нуклеозиды образуются за счет N-гликозидной связи между девятым атомом азота у пуриновых (первым атомом азота - у пиримидиновых) оснований и гидроксилом первого атома углерода рибозы или дезоксирибозы. Во избежание путаницы, нумерация атомов азотистых оснований осуществляется арабскими цифрами, а у атомов углерода рибоз - арабскими цифрами со “штрихом”.
пуриновые |
|
пиримидиновые |
|
Нуклеотиды отличаются от нуклеозидов наличием остатков фосфорной кислоты (от одного до трех), связанных простой эфирной связью с гидроксилом 5' атома углерода рибоз. Остатки фосфорных кислот между собой также связаны простой эфирной связью. В зависимости от числа остатков фосфорной кислоты в нуклеотидах различают моно-, ди- и трифосфонуклеотиды. Их номенклатура приведена в таблице:
азотистые основания |
нуклеозиды |
нуклеотиды |
|
полное название |
Сокращенное |
||
аденин |
аденозин |
Аденозинмонофосфат |
АМФ |
гуанин |
гуанозин |
Гуанозинмонофосфат |
ГМФ |
цитозин |
цитидин |
Цитидинмонофосфат |
ЦМФ |
урацил |
уридин |
Уридинмонофосфат |
УМФ |
тимин |
тимидин |
тимидинмонофосфат |
ТМФ |
С
обственно
нуклеиновые кислоты представляют собой
полинуклеотидмоно-фосфаты. Полимерная
цепь образуется за счет фосфодиэфирной
связи между 3'- гидроксилом одного
нуклеотида и 5'- гидроксилом другого.
Таким образом, первичная структура
нуклеиновых кислот представляет собой
порядок чередования нуклеотидов в
полинуклеотидной цепи. Один из концов
этой цепи (изображаемый слева) имеет
свободный гидроксил при 5' - атоме С, а
другой (изображаемый справа) - свободный
гидроксил при 3'- атоме углерода рибоз.
Поскольку основой нуклеиновых кислот
является сахарофосфатный остов, в
сокращенных написаниях участков цепи
используют лишь однобуквенные символы,
соответствующего азотистого основания.
Полное и схематичное обозначения
участка полинуклеотидной цепи приведены
ниже:
5'-НО-G-A-A-T-C-T-A-C-A-…3'
Вследствие наличия сильно диссоциирующих фосфатных групп, нуклеиновые кислоты легко образуют связи с основными белками с образованием нуклеопротеинов. Протеины отделяются от НК детергентами или после расщепления белков протеиназами НК осаждаются спиртом.
Подобно белкам, ДНК имеют первичную, вторичную и третичную структуру.
