- •190302 «Вагоны»
- •190303 «Электрический транспорт железных дорог»
- •101800 «Электроснабжение железных дорог»
- •Лекция 1. Электродные потенциалы и электродвижущие силы. Характеристика хит
- •1. Электродный потенциал металла.
- •2. Классификация химических источников тока (хит).
- •3. Электрохимические характеристики источников тока
- •Лекция 2. Первичные гальванические элементы
- •1. Гальванический элемент Вольта и Якоби-Даниэля.
- •2. «Сухой» элемент Лекланше. «Сухие» элементы новой конструкции.
- •3. Щелочные (алкалические) марганцово-цинковые и медноокисные
- •4. Ртутно-цинковые и серебряно-цинковые щелочные элементы
- •Лекция 3. Аккумуляторы
- •1. Основные понятия. Электрические характеристики и классификация аккумуляторов.
- •2. Свинцовые аккумуляторы
- •3. Щелочные аккумуляторы
- •4. Стартерные батареи
- •5. Аккумуляторы с расплавленным и твёрдым электролитом
- •6. Применение аккумуляторов на железнодорожном транспорте
- •Лекция 4. Топливные элементы
- •1. Основные понятия
- •Устройство топливных элементов (тэ). Водородно-кислородные элементы с различными электролитами.
- •3. Установки с электрохимическим генератором
- •4. Применение топливных элементов
- •Лекция 5. Коррозия. Теоретические вопросы в области коррозии
- •Определение коррозии и значение коррозионной проблемы
- •2. Прямые и косвенные потери от коррозии.
- •3. Причины возникновения коррозии.
- •4. Химическая коррозия
- •5. Электрохимическая коррозия
- •6. Влияние водородного показателя среды на скорость коррозии.
- •7. Оценка коррозионной стойкости металлов.
- •Лекция 6. Коррозия металлов в различных средах
- •Контактная коррозия.
- •2. Атмосферная коррозия
- •3. Грунтовая коррозия
- •3.1. Защита металлов от грунтовой коррозии.
- •4. Коррозия под действием блуждающих токов
- •5. Морская коррозия металлов
- •Лекция 7. Виды коррозии и техника борьбы с коррозией
- •Равномерная коррозия.
- •2. Питтинговая коррозия
- •2.1. Механизм питтинговой коррозии.
- •2.2. Влияние различных факторов на питтинговую коррозию.
- •2.3. Предупреждение питтинговой коррозии
- •3. Щелевая коррозия
- •3.1. Механизм щелевой коррозии
- •4. Нитевидная коррозия
- •5. Межкристаллитная коррозия
- •Механизм мкк
- •5.2. Влияние различных факторов на мкк
- •5.3. Предупреждение мкк
- •6. Ножевая коррозия
- •7. Избирательная коррозия
- •7.1. Обесцинкование латуней.
- •8. Графитизация чугуна
- •9. Коррозия под напряжением
- •10. Водородная хрупкость. Наводораживание
- •11. Коррозионная усталость и её предупреждение
- •Лекция 8. Способы защиты металлов и сплавов от коррозии. Защитные покрытия
- •1. Защита металлов от коррозии поверхностными тонкослойными
- •2. Фосфатные и оксидные защитные плёнки.
- •2.1. Фосфатирование
- •2.2. Оксидирование
- •3. Анодирование
- •4. Гальванические покрытия
- •5. Жаростойкие защитные покрытия
- •5.1. Термодиффузионный метод покрытия.
- •5.2. Горячий метод или метод погружения в расплавленный металл
- •5.3. Металлизация напылением
- •5.4. Плакирование – термомеханический способ
- •6. Неметаллические покрытия
- •1. Катодная и анодная защиты
- •2. Протекторная защита
- •3. Защита от коррозии под действием блуждающих токов.
- •Лекция 10. Ингибиторы коррозии металлов. Упаковочные материалы
- •1. Механизм ингибирования коррозии
- •Классификация ингибиторов. Адсорбционные и пассивирующие ингибиторы
- •3. Ингибиторы кислотной коррозии металлов
- •Ингибиторы коррозии в нейтральных средах
- •Упаковочные материалы для металлоизделий на бумажной основе
- •Заключение
- •Список литературы
4. Стартерные батареи
Аккумуляторные стартерные батареи собираются в одном моноблоке – многоячеечном пластмассовом или эбонитовом корпусе. В каждой ячейке разделенные сепараторами электроды собраны в блок. Каждый электрод состоит из активной массы и металлической решетки, которая служит каркасом и токоотводом. Сепараторы изготавливают из пористой кислотостойкой пластмассы. В пробке, закрывающей отверстие для заливки электролита, имеются вентиляционное отверстие (для выхода газов) и отражатель (для предотвращения выплескивания). В последнее время в электродные массы таких АКБ добавляют сурьму и сплавы на основе свинца и кальция. Это приводит к более низкому газовыделению, снижению скорости саморазряда и незначительному расходу электролита.
Основные неисправности стартерных батарей.
Внешние – трещины в моноблоках, крышках, повреждение пробок, окисление или излом токоотводов.
Внутренние – разрушение электродов, коррозия, оплывание активной массы, короткое замыкание, переполюсовка электродов, их сульфатация, повышенный саморазряд и т.д.
Для борьбы с внутренними неисправностями нужно избегать частых и длительных перезарядов АКБ, соблюдать плотность электролита, не допускать в нём посторонних примесей, применять для приготовления электролита только дистиллированную воду. Хранить заряженные АКБ с электролитом нужно в прохладных помещениях при постоянной температуре.
5. Аккумуляторы с расплавленным и твёрдым электролитом
В последние годы разрабатываются аккумуляторы с литиевым отрицательным электродом, неводным раствором электролита и положительным электродом на базе углерода, оксидов ванадия, никеля, кобальта и марганца.
Представителем аккумуляторов с расплавленным электролитом является хлор-литиевый аккумулятор. На графитовом стержне адсорбирован газообразный хлор:
(–) Li / LiCl, KCl / Cl2, C (+)
Суммарный электрохимический процесс: 2Li + Cl2 ↔ 2 LiCl.
Преимущества такого аккумулятора – высокая удельная энергия (до 400 Вт*ч/кг) и мощность (до 2000 Вт/кг). Недостатки – высокая коррозионная активность электролита, токсичность хлора, взрывоопасность.
Сейчас перспективными считаются аккумуляторы, где вместо чистого лития используются его сплавы с кремнием, алюминием, а катод состоит из хлористого теллура: (–) Li, Al / LiCl, KCl / TeCl4 (+).
Также активно разрабатываются аккумуляторы с твёрдыми и неводными электролитами (пропиленкарбонатом, фторуглеродами CFx, тионилхлоридом SOCl2 и др.). Такие аккумуляторы уже сейчас дешевы, их ресурс составляет более 1000 циклов, у них высокая удельная энергия, однако пока они работают при малых токах.
6. Применение аккумуляторов на железнодорожном транспорте
Наиболее распространены и популярны на подвижном составе кислотные свинцовые аккумуляторы – этим они обязаны прежде всего стартерным батареям, предназначенным для различных средств передвижения. Они применяются для запуска двигателей внутреннего сгорания и являются тяговыми устройствами на маневровых электровозах, электрокарах и т.д.
Закрытые свинцовые аккумуляторы (АБН-72, АБН-80 - антиблокировочные намазанные) используются в стационарных и напольных условиях для питания устройств железнодорожной автоматики, телемеханики и связи, а также на железнодорожных путях и сортировочных горках, имеющих электрическую и диспетчерскую централизацию. На их базе комплектуется большинство стационарных и вагонных батарей. Так, на тепловозах в основном применяют стартерные батареи 3-СТ-60 и 6-СТ-42 («3» или «6» - число последовательно соединенных аккумуляторов в АКБ, «60» или «42» - номинальная емкость при 10-часовом непрерывном режиме разряда).
Щелочные аккумуляторы применяются также достаточно широко: на тепловозах, пассажирских вагонах, электрокарах, погрузчиках, рудничных электровозах, в переносной аппаратуре, для питания аппаратуры связи и электронной аппаратуры.
Для переносных и портативных приборов и бытовой техники всё чаще используют литиевые аккумуляторы с расплавленным и твёрдым электролитом. Они имеют ёмкость до 10 А·ч и рассчитаны на длительный режим разрядки; являются многоцелевыми: обеспечивают работу радиоэлектронных и светотехнических изделий, переносных приборов и т.д. (транзисторных радиоприемников, карманных фонарей, тестеров, электрочасов, табло и пр.).
