
- •Перечень теоретических вопросов и ответов экзамена
- •1. Понятие „электрический привод”
- •2. Классификация электроприводов
- •1.Режимы работы электродвигателей в электроприводе
- •2. Режимы работы электроприводов. Динамический момент.
- •3. Механические характеристики электродвигателей
- •4.Механические характеристики механизмов
- •1. Способы пуска электродвигателей постоянного тока
- •1.1. Прямой пуск
- •1.2. Реостатный пуск
- •2. Способы регулирования частоты вращения электродвигателей постоянного тока
- •2.1. Основные сведения
- •3. Электрическое торможение двигателей постоянного тока
- •3.1. Динамическое торможение двигателя параллельного возбуждения
- •3.2. Рекуперативное торможение двигателя постоянного тока
- •Реверс двигателей постоянного тока
- •4.1. Реверс изменением направления тока в обмотке якоря(ротора)
- •4.2. Реверс изменением направления тока обмотке возбуждения (статора)
- •1. Способы пуска электродвигателей переменного тока
- •1.1.Прямой пуск короткозамкнутых асинхронных двигателей
- •1.2. Реостатный пуск двигателей с фазным ротором
- •1.3. Пуск при пониженном напряжении на обмотке статора
- •2. Способы регулирования частоты вращения 3-фазных асинхронных двигателей
- •2.1. Основные сведения
- •3. Электрическое торможение асинхронных двигателей
- •3.1. Рекуперативное торможение при переходе с большей скорости на меньшую
- •4. Реверс 3-фазных асинхронных электродвигателей
- •2. Командоаппараты
- •2.1. Основные сведения
- •2.2. Кнопочные посты управления
- •2.3. Командоконтроллеры
- •2.4. Конечные и путевые выключатели
- •Рычажные выключатели
- •3.Контроллеры
- •3.1. Основные сведения
- •3.2. Силовые контроллеры
- •4.Контакторы
- •Основные сведения
- •4.3. Основные системы контакторов
- •4.4. Устройство и принцип действия контактора
- •4.5. Назначение контактов Контакты предназначены для непосредственной коммутации электрических цепей.
- •4.7. Электромагнитная система контакторов
- •4.8. Катушки контакторов
- •4.10. Дугогасительная система контакторов
- •5.Тормозные устройства
- •5.1. Основные сведения
- •5.2. Ленточные тормозные устройства
- •5.3. Дисковые тормозные устройства
- •5.4. Колодочные тормозные устройства
- •5.5. Колодочный тормоз с электромагнитным приводом
- •5.6. Колодочный тормоз с электрогидравлическим приводом
- •1. Системы управления судовыми электроприводами
- •2. Системы релейно-контакторного управления и системы генератор – двигатель (г-д)
- •2.1. Основные сведения об ескд
- •2.4. Классификация и обозначение схем
- •2.5. Краткая характеристика типов схем
- •2.6. Условные графические изображения элементов электрических схем
- •1. Стандартные защиты судовых электроприводов
- •2. Защиты от токов короткого замыкания
- •2.1.Последствия токов короткого замыкания
- •3. Защиты от токов перегрузки
- •3.1.Причины и последствия токов перегрузки
- •3.2.Схема защиты от токов перегрузки
- •4. Защиты по снижению напряжения
- •4.1.Причины и последствия снижения напряжения
- •4.3.Схемы защит по снижению напряжения (см.Приложение)
- •4.3.2.Нулевая защита Вариант №1
- •2.1. Основные сведения
- •2.2. Реостаты
- •2.3. Магнитные пускатели
- •2.4. Станции управления и магнитные контроллеры
- •3. Схемы автоматизированных систем управления судовыми электроприводами
- •1. Рулевые электроприводы
- •2. Электромеханические передачи
- •3. Электрогидравлические передачи
- •Рулевые машины с насосом постоянной подачи
- •3.6. Рулевые машины с насосами переменной подачи
- •3.7. Плунжерные рулевые машины
- •3.8. Лопастные рулевые машины
- •3.9. Поршневые машины с качающимися цилиндрами
- •4. Приводные электродвигатели насосов постоянной и переменной подачи
- •1.3. Состав рулевого электропривода
- •13.1. Основные сведения
- •Подруливающие устройства
- •Успокоители качки
- •1.1. Общая характеристика судовых нагнетателей
- •1.2. Классификация нагнетателей
- •1.3. Основные параметры
- •4. Системы управления электроприводами нагнетателей
- •4.1. Основные сведения
- •4.2. Якорно-швартовные лебедки
- •4.3. Шпили
- •4.4. Швартовные лебедки
- •6. Виды управления яшу
- •7. Особенности работы электроприводов яшу
- •8. Нагрузочные диаграммы электропривода якорно-швартовных устройств Нагрузочной диаграммой электропривода называют зависимость мощности, тока или момента электродвигателя от времени.
- •8.1. Режим подъёма одного якоря.
- •8.2. Режим подъёма 2-х якорей
- •8.3. Швартовный режим
- •9. Характеристики якорного и швартовного снабжения судов
- •9.2. Характеристика швартовного снабжения судов
- •10. Требования Правил Регистра к якорным и швартовным электроприводам
- •11. Системы управления яшу
- •2. Устройство гпм
- •2.1. Грузовая стрела
- •2.2. Грузовая лебедка
- •2.3. Грузовые краны
- •3. Режимы работы гпм
- •4. Нагрузочные диаграммы электроприводов гпм
- •3.1. Нагрузочная диаграмма при работе одной лебедки
- •5. Условия работы гпм
- •6. Технико-экономические характеристики электроприводов гпм переменного тока
- •7. Пуско-регулирующая аппаратура электроприводов гпм
- •8. Защитные устройства электроприводов гпм
- •9. Тормозные устройства гпм
- •10. Виды систем управления.
- •1. Классификация гэу
- •2. Гэу постоянного тока
- •2.1. Основные сведения
- •2.2. Схемы включения генераторов и гребных двигателей гэу постоянного тока
- •2.3. Принципиальная схема дизельной электрической установки (дгэу) на постоянном токе
- •3. Гэу переменного тока
- •3.1. Типы гребных электродвигателей
- •3.3. Способы регулирования скорости гребных электродвигателей
- •3.4. Реверс гэд
- •3.5. Структурные схемы гэу переменного тока
- •3.6. Принципиальная схема одновальной тэгу на переменном токе
- •4. Гэу двойного рода тока
- •4.1. Основные сведения
- •4.2. Структурная схема гэу двойного рода тока с неуправляемым выпрямителем
- •4.3. Гэу двойного рода тока с врш
- •4.4. Сравнение эксплуатационных свойств гэу двойного рода тока и гэу постоянного и переменного тока
4.5. Назначение контактов Контакты предназначены для непосредственной коммутации электрических цепей.
В зависимости от того, в каких цепях находятся контакты, различают главные и вспомогательные контакты.
Главные контакты предназначены для коммутации силовых цепей. К силовым цепям относят цепи с токами в десятки и сотни ампер, например, цепи обмотки якоря двигателей постоянного тока, обмоток статора и ротора 3-фазных асинхронных двигателей и др.
Часто такие цепи называют цепями сильного или главного тока.
Вспомогательные контакты предназначены для коммутации цепей управления, сигнализации и контроля. К цепям управления относят цепи катушек контакторов и реле, сигнализации – сигнальных лампочек и звуковых приборов ( звонков, ревунов и т.п. ), контроля – тепловых и температурных реле, конечных выключателей и т.п.
Значение тока в таких цепях не превышает нескольких десятков ампер ( обычно же - доли ампера или единицы ампер ). Поэтому такие цепи часто называют цепями слабого тока.
Устройство
Конструкции контактов чрезвычайно разнообразны. В контакторах судового исполнения применяют, в основном, контакты двух типов:
пальцевые;
мостиковые.
Рис. 9.36: пальцевые ( а ) и мостиковые ( б ) контакты; А – провал контактов; В – раствор контактов; 1 – подвижный мостиковый контакт; 2 – неподвижный контакт
Пальцевые контакты по форме напоминают согнутый палец, т.е. имеют изогнутую форму ( рис. 9.36, а ). Такая форма обеспечивает перекат и проскальзывание одного контакта по другому при включении контактора. Это приводит к стиранию изолирующей оксидной пленки и грязи с поверхности контакта, т.е. к самоочистке контактов.
Кроме того, места прилегания контактов и их размыкания отдалены друг от друга( на рис. 9.36, а, место прилегания расположено выше ). Это означает, что поверхность контактов в месте прилегания более ровная, чем в месте размыкания, в котором контакты обгорают и оплавляются вследствие действия дуги.
Оплавление приводит к тому, что площадь соприкосновения контактов резко уменьшается, поэтому переходное сопротивление ( между подвижным и неподвижными контактами ) и , соответственно, нагрев контактов увеличивается. В результате возможно приваривание контактов друг к другу ( сваривание контактов ).
Чтобы уменьшить износ , на медные контакты наваривают серебряные накладки в виде плоских круглых пятачков. Серебро почти не окисляется и переходное сопротивление таких контактов изменяется незначительно. Однако серебро мягче меди, поэтому эти контакты изнашиваются быстрее и стоят дороже.
В последнее время во многих типах современных контакторов применяют более износостойкие металлокерамические контакты.
Мостиковые контакты ( рис. 9.36, б ) по форме напоминают мостик, соединяющий два берега ( в данном случае – два неподвижных контакта ). У таких контактов перекатывание и проскальзывание минимально, поэтому для предотвращения образования оксидной пленки поверхность мостиковых контактов часто покрывается тонким слоем серебра.