
- •Основные гипотезы и допущения в сопротивлении материалов.
- •2. Внутренние силы. Метод сечений. Виды деформаций.
- •3. Допускаемые напряжения. Диаграммы растяжения пластических и хрупких материалов. Модуль упругости.
- •4. Напряжения при растяжении и сжатии. Закон Гука. Условие прочности
- •5. Деформации (продольные и поперечные) при осевом действии сил. Условие жесткости.
- •6.Три типа задач при расчете на прочность.
- •7. Деформация Гука при сдвиге
- •8. Кручение. Крутящий момент. Касательные напряжения. Условие прочности.
- •Напряжения при кручении
- •9. Определение угла закручивания. Условие жесткости при кручении. Зависимость между относительным углом закручивания и крутящим моментом Подставим выражение в формулу :
- •11. Напряжения при чистом и поперечном изгибе (нормальные и касательные). Условие прочности.
- •12. Подбор сечения при изгибе.
- •13)Определение перемещений при изгибе. Дифференциальное уравнение упругой линии.
- •14)Определение перемещений при изгибе. Метод начальных параметров
- •14.2)(Аналогичная теория, просто в дополнение)
- •15. Геометрические характеристики поперечных сечений Главные центральные оси инерции.
- •16. Напряженное состояние в точке. Обобщенный закон Гука.
- •17. Главные площадки и главные напряжения.
- •18. Определение напряжений на произвольных площадках. Круг Мора.
- •19.Закон парности касательных напряжений.
- •20. Сложное сопротивление. Понятие о теориях прочности.
- •21.Структурный анализ плоских механизмов. Определения: машина, механизм, звено, виды звеньев.
- •22. Кинематическая пара, кинематическая цепь.
- •23. Кинематические пары и их классификация.
- •24. Число степеней свободы и класс механизма.
- •Класс механизма
- •25.Группы Асура и их классификация.
- •26.Замена высших кинематических пар низшими.
- •27. Степень подвижности механизма.
- •29. Планы скоростей и ускорений и их свойства.
- •31. Кинетостатика. Силы инерции и момент сил инерции твердого тела.
- •17.2. Приведение системы сил инерции твердого тела к простейшему виду
- •32. Задачи силового расчета плоских механизмов. Уравновешивающая сила.
- •33. Силовой расчет группы Асура 2-го класса.
- •35. Назначение и виды передач. Основные виды зубчатых передач.
- •Фрикционная передача
- •Зубчатая передача
- •Ременная передача.
- •Червячная передача
- •Цепная передача
- •Наиболее типичные виды зубчатых передач
- •Реже используемые виды зубчатых передач
- •37. Эвольвента и её свойства
- •39. Передаточные отношения. Формулы для расчета передаточных отношений.
- •40. Планетарные механизмы.
- •41. Определение сил в зацеплении зубчатых передач.
- •42. Расчетная схема валов редуктора. Определение реакций в опорах подшипников. Построение эпюр изгибающих и крутящих моментов.
- •43. Проверочный и проектный расчет зубьев на контактную выносливость и изгиб. Выбор допускаемых напряжений.
- •44. Подшипники скольжения: конструкции, материалы, смазка.
- •46) Расчет шпонок
- •47) Расчет сварных соединений
35. Назначение и виды передач. Основные виды зубчатых передач.
Виды передач:
Фрикционная передача Зубчатая передача Ременная передача Червячная передача Цепная передача Храповые механизмы
Фрикционная передача
Достоинства фрикционной передачи:
Простота изготовления тел качения;
Равномерность вращения и бесшумность работы;
Возможность бесступенчатого регулирования частоты вращения и включения/выключения передачи на ходу;
За счет возможностей проскальзывания передача обладает предохранительными свойствами.
Недостатки фрикционной передачи:
Проскальзывание, ведущее к непостоянству передаточного числа и потери энергии;
Необходимость обеспечения прижима.
Применение фрикционной передачи: В машиностроении чаще всего применяют бесступенчатые фрикционные передачи для бесступенчатого регулирования скорости.
Зубчатая передача
В зубчатых передачах вращение от одного колеса к другому передается при помощи зубьев. Зубчатые колеса вращаются намного легче фрикционных. Объясняется это тем, что здесь нажима колеса на колесо совсем не требуется.
Передаточное число в зубчатых колесах может выражаться и через число зубцов:
i = z2/z1
где z2 - число зубцов ведомого колеса, z1 - число зубцов ведущего колеса.
Достоинства зубчатой передачи:
Значительно меньшие габариты, чем у других передач;
Высокий кпд (потери в точных, хорошо смазываемых передачах 1-2%);
Большая долговечность и надёжность.
Недостатки зубчатой передачи:
Шум при работе;
Необходимость точного изготовления.
Применение зубчатой передачи: Наиболее распространённый вид механических передач. Их применяют для передачи мощностей - от ничтожно малых до десятков тысяч кВт.
Ременная передача.
Ременная передача, как и шестеренчатая, встречается очень часто. Ремень, натянутый на шкивы, охватывает какую-то их часть. Эта облегающая часть (дуга) носит, название угла обхвата. Чем больше будет угол обхвата, тем лучше образуется сцепление, лучше и надежнее будет вращение шкивов. При малом угле обхвата может получиться так, что ремень на малом шкиве станет проскальзывать, вращение будет передаваться плохо или его совсем не будет.
Достоинства ременной передачи:
Простота конструкции;
Возможность расположения ведущего и ведомого шкивов на больших расстояниях (более 15 метров);
Плавность и бесшумность работы;
Предохранение механизмов от перегрузки за счёт упругих свойств ремня и его способности проскальзывать по шкивам;
Возможность работы с большими угловыми скоростями.
Недостатки ременной передачи:
Постепенное вытягивание ремней, их недолговечность (при больших скоростях работает от 1000 до 5000 часов);
Непостоянство передаточного отношения (из-за неизбежного проскальзывания ремня);
Относительно большие размеры.
Применение ременной передачи: Используется очень часто, от бытовой электроники до промышленных механизмов мощностью до 50 кВт.
Червячная передача
Червячная передача служит для получения вращения между валами, пересекающимися в одной плоскости. Передача состоит из винта (червяка) и винтового колеса, которые находятся в зацеплении. При вращении червяка витки ведут зубцы колеса и заставляют его вращаться. Обычно вращение от червяка передается колесу. Обратная передача почти не встречается из-за самоторможения.
Червячная передача применяется чаще всего при больших передаточных числах в пределах от 5 до 300. Благодаря большому передаточному числу червячная передача широко применяется в качестве механизма для снижения числа оборотов - редуктора.
Достоинства червячной передачи:
Плавность и бесшумность работы;
Большое передаточное число.
Недостатки червячной передачи:
Усиленное тепловыделение;
Повышенный износ;
Склонность к заеданию;
Сравнительно низкий кпд.
Применение червячной передачи: Преимущественно используется, когда требуется большое передаточное число.