- •1.Понятие информации и данных, их сходство и различие.
- •2.Сущность инфологического и даталогического подходов к проектированию баз данных. Задачи, решаемые на этапе инфологического проектирования информационной модели базы данных.
- •3.Понятие банка данных. Компоненты банка данных и их назначение. Задачи банком данных.
- •4.Этапы проектирования базы данных. Задачи информационно-логического (инфологического) этапа проектирования.
- •5.Нормализация реляционных отношений. Четвертая нормальная форма.
- •6.Архитектура базы данных. Физическая и логическая независимость данных. Архитектура базы данных в соответствии со стандартом ansy.
- •7. Пользователи систем баз данных. Основные функции группы администратора базы данных.
- •8. Явные и неявные ограничения целостности реляционной модели, их реализация средствами языка ddl.
- •9.Определение субд. Этапы развития. Языковые и программные средства субд.
- •10.Операции, выполняемые над реляционными отношениями. Односхемные операции реляционной алгебры. Примеры.
- •11. Классификация баз данных. Документальные базы данных.
- •13.Определение базы данных (бд), требования, предъявляемые к бд.
- •15. Двухуровневая архитектура банка данных (БнД). Процесс прохождения пользовательского запроса в БнД с двухуровневой архитектурой.
- •16.Трехуровневая архитектура банка данных (БнД). Процесс прохождения пользовательского запроса в БнД с трехуровневой архитектурой.
- •17. Функциональная зависимость атрибутов реляционных отношений. Нормализация отношений. Задачи нормализации отношений.
- •18. Первая и вторая нормальные формы реляционных отношений. Привести пример приведения отношения ко второй нормальной форме.
- •19.База данных (бд), определение, классификация бд, требования, предъявляемые к бд.
- •20.Структура даталогической модели данных, определенная стандартом codasyl. Определение и назначение структурных компонентов этой модели.
- •21.Аномалии модификации реляционных таблиц. Нормализация реляционных отношений. Пример.
- •22.Концептуальный, внутренний и внешний уровни представления данных в базе данных, их назначения.
- •23. Атрибуты в модели «Сущность-связь». Определение атрибутов, их назначение, способы изображения на er- диаграммах.
- •25.Реляционные таблицы. Первичные и внешние ключи отношений. Ограничения целостности по внешним ключам.
- •26. Идентификационно-зависисмые сущности в модели «Сущность-связь». Определение, пример, графическая интерпретация.
- •27.Подтипы сущностей в модели «Сущность-связь». Определение, пример, графическая интерпретация. Реализация в реляционной субд.
- •28.Агрегированные объекты в модели «Сущность-связь». Определение, пример, графическая интерпретация.
- •29.Реляционная схема таблиц. Типы ключей реляционных отношений. Определение, назначение, пример.
- •30.Язык описания данных реляционных таблиц (ddl). Структура этого языка.
- •31. Инфологическая модель "Сущность-связь", структурные компоненты модели, определение и назначение компонентов.
- •32.Тип связи “1: m” между объектами предметной области, определение, пример. Графическая интерпретация. Привести схему реализации в базе данных.
- •33.Агрегация и обобщение в модели «Сущность-связь» определение, сходство и различие. Примеры агрегации и обобщения.
- •34. Понятие отображения и ассоциации в модели «Сущность-связь», их сходство и различие. Привести пример.
- •35.Древовидная иерархическая структура базы данных. Рекурсивное дерево, пример.
- •36.Автоматизированные информационные системы, основанных на базе данных. Информационно-поисковые системы и системы обработки данных. Основные компоненты систем.
- •37.Реляционная модель данных. Операции реляционной алгебры, выполняемые над унарными и бинарными отношениями. Примеры.
- •38.Представление древовидных структур связанными линейными списками. Метод указателей на исходные записи.
- •39.Представление древовидных структур связанными линейными списками. Метод указателей на порожденные записи.
- •40.Физическая организация данных. Списковые структуры, последовательное распределение памяти.
- •41.Физическая организация данных. Списковые структуры, связное распределение памяти.
- •42.Организация данных в памяти. Связанное распределение памяти. Адресная функция.
- •43.Набор в модели данных codasyl. Определение, назначение, графическая интерпретация.
- •44.Этапы проектирования базы данных. Задачи логического (даталогического) этапа.
- •45.Физическая организация данных. Бинарное дерево. Технология поиска записи по бинарному дереву.
- •46.Неплотный индекс. Технология поиска записей в основном файле внешней памяти с использованием неплотного индекса.
- •47.Плотный индекс. Технология поиска записей базы данных в основном файле внешней памяти с использованием плотного индекса.
- •48.Инвертированный файл. Реализация многоключевого поиска в базе данных с использованием инвертированного файла.
- •49.Транзитивная зависимость атрибутов реляционных отношений. Третья нормальная форма. Привести пример приведения отношения к 3нф.
- •50. Физическая организация данных. Линейный список.
- •51.Анализ предметной области с помощью er-метода. Типы атрибутов сущности.
- •52. Инвертированный файл. Технология доступа к данным по вторичному ключу.
- •53. Назначение служебной и информационной частей хранимой записи
- •54.Методы обработки файлов на физическом уровне. Алгоритм поиска по бинарному дереву.
- •55.Правила перехода от er- модели предметной области к схеме базы данных.
- •56. Структуризация пространства внешней памяти при хранении объектов базы данных.
- •58.Логическое проектирование базы данных. Преобразование er- диаграммы в схему базы данных.
- •59. Корректирующие запросы в субд access. Команды sql, реализующие эти запросы.
- •60. Плотный индекс. Технология поиска записей базы данных в основном файле внешней памяти с использованием плотного индекса.
- •61.Установить функциональную зависимость атрибутов реляционного отношения вклад (фио вкладчика, Номер сберкнижки, Дата, Приход, Расход, Остаток), нормализовать его, приведя к 3 нормальной форме.
- •73. Из таблиц r2(фио, Группа) и r3(Группа, Дисциплина, Дата_экзамена) сформировать sql-запрос: «Вывести список студентов, которым надо сдавать экзамен с указанием названия сдаваемых дисциплин».
- •74.Команда Select языка запросов к базе данных sql. Формат и назначение этой команды.
- •1. Понятие информации и данных, их сходство и различие.
- •2.Сущность инфологического и даталогического подходов к проектированию баз данных. Задачи, решаемые на этапе инфологического проектирования информационной модели базы данных.
- •12. Описание реляционных таблиц в нотации Бэкуса-Наура. Пример.
- •14.Реляционное отношение. Определение, свойства. Разносхемная операция реляционной алгебры естественное соединение, пример.
- •24. Слабые сущности в инфологической модели «Сущность-связь». Определение, пример, графическая интерпретация.
44.Этапы проектирования базы данных. Задачи логического (даталогического) этапа.
Концептуальное (инфологическое) проектирование — построение семантической (смысловой) модели предметной области, то есть информационной модели наиболее высокого уровня абстракции. Такая модель создаётся без ориентации на какую-либо конкретную СУБД и модель данных. Термины «семантическая модель», «концептуальная модель» и «инфологическая модель» являются синонимами. Инфологическая модель является как образом реальности, так и образом проектируемой базы данных для этой реальности.
Чаще всего концептуальная модель базы данных включает в себя:
§ описание информационных объектов, или понятий предметной области и связей между ними.
§ описание ограничений целостности, т.е. требований к допустимым значениям данных и к связям между ними.
Логическое (даталогическое) проектирование — создание схемы базы данных на основе конкретной модели данных, например, реляционной модели данных. Для реляционной модели данных даталогическая модель — набор схем отношений, обычно с указанием первичных ключей, а также «связей» между отношениями, представляющих собой внешние ключи.
Физическое проектирование — создание схемы базы данных для конкретной СУБД. Специфика конкретной СУБД может включать в себя ограничения на именование объектов базы данных, ограничения на поддерживаемые типы данных и т.п. Кроме того, специфика конкретной СУБД при физическом проектировании включает выбор решений, связанных с физической средой хранения данных (выбор методов управления дисковой памятью, разделение БД по файлам и устройствам, методов доступа к данным), создание индексов и т.д.
45.Физическая организация данных. Бинарное дерево. Технология поиска записи по бинарному дереву.
Определение: Деревом называется конечное множество, состоящее из одного или более элементов, называемых узлами, таких, что:
1между узлами имеет место отношение типа "исходный-порожденный";
2есть только один узел, не имеющий исходного. Он называется корнем;
3все узлы за исключением корня имеют только один исходный; каждый узел может иметь несколько порожденных;
4отношение "исходный-порожденный" действует только в одном направлении, т.е. ни один потомок некоторого узла не может стать для него предком.
Число порожденных отдельного узла (число поддеревьев данного корня) называется его степенью. Узел с нулевой степенью называют листом или концевым узлом. Максимальное значение степени всех узлов данного дерева называется степенью дерева.
Если в дереве между порожденными узлами, имеющими общий исходный, считается существенным их порядок, то дерево называется упорядоченным. В задачах поиска почти всегда рассматриваются упорядоченные деревья.
Упорядоченное дерево, степень которого не больше 2 называется бинарным деревом. Бинарное дерево особенно часто используется при поиске в оперативной памяти.
Алгоритм поиска: вначале аргумент поиска сравнивается с ключом, находящимся в корне. Если аргумент совпадает с ключом, поиск закончен, если же не совпадает, то в случае, когда аргумент оказывается меньше ключа, поиск продолжается в левом поддереве, а в случае, когда больше ключа - в правом поддереве. Увеличив уровень на 1 повторяют сравнение, считая текущий узел корнем.
Пример: Пусть дан список студентов, содержащий фамилии и средний бал успеваемости (см. таблицу 1.1). В качестве ключа используется фамилия студента. Предположим, что все записи имеют фиксированную длину, тогда в качестве указателя можно использовать номер записи. Смещение записи в файле в этом случае будет вычисляется как ([номер_записи] -1 ) * [длина_записи]. Пусть аргумент поиска "Петров". На рисунке 1.2 показаны одно из возможных для этого набора данных бинарных деревьев поиска и путь поиска.
