Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Elektronika.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
256.15 Кб
Скачать

2. Тунне́льный эффекттуннели́рование — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера.

Туннельный эффект принято характеризовать так называемым коэффициентом прозрачности барьера:

Коэффициент прозрачности характеризует вероятность прохождения частицы сквозь барьер. Эта вероятность очень сильно зависит от толщины барьера d: чем толще барьер, тем меньше вероятность туннельного эффекта. Туннельный эффект используется в электронике (туннельные диоды, автоэлектронная эмиссия). Природа a -распада также связана с туннельным эффектом.

3. Эффе́кт Га́нна — явление возникновения осцилляций тока (~ 109—1010 Гц) в однородном многодолинном полупроводнике при приложении к нему сильного электрического поля. Впервые этот эффект наблюдался Джоном Ганном в 1963 г. на арсениде галлия, затем явление осцилляций тока было обнаружено в фосфиде индияфосфиде галлия и ряде других полупроводниковых соединений.

Диод Ганна  — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.

4. Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота.

Эффект Холла, в некоторых случаях, позволяет определить тип носителей заряда (электронный или дырочный) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников.

На основе эффекта Холла работают датчики Холла: приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли ДПР (датчика положения ротора). ДПР реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в коллекторном ДПТ.

Также на основе эффекта Холла работают некоторые виды ионных реактивных двигателей.

Также датчики на основе эффекта Холла широко используются в смартфонах в качестве физической основы работы электронного компаса.

5. Дио́д — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического поля. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключаемый к отрицательному полюсу — катодом.

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроныигнитроныстабилитроны),полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.

Ламповые диоды

Ламповые диоды представляют собой радиолампу с двумя рабочими электродами, один из которых подогревается (проходящим через него током из специальной цепи накала или отдельной нитью накала). Благодаря этому, часть электронов покидает поверхность разогретого электрода (катода) и под действием электрического поля движется к другому электроду — аноду. Если же поле направлено в противоположную сторону, электрическое поле препятствует этим электронам и тока (практически) нет.

Полупроводниковые диоды

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом (Диод Шоттки).

Специальные типы диодов

  • Туннельные диоды (диоды Лео Эсаки). Диоды, существенно использующие квантовомеханические эффекты. Имеют область т. н. «отрицательного сопротивления» на вольт-амперной характеристике. Применяются как усилители, генераторы и пр.

  • Варикапы (диоды Джона Джеумма). Используется то, что запертый p—n-переход обладает большой ёмкостью, причём ёмкость зависит от приложенного обратного напряжения. Применяются в качестве конденсаторов переменной ёмкости.

  • Светодиоды (диоды Генри Раунда). В отличие от обычных диодов, при рекомбинации электронов и дырок в переходе излучают свет в видимом диапазоне, а не в инфракрасном. Однако выпускаются светодиоды и с излучением в ИК диапазоне, а с недавних пор — и в УФ.

  • Фотодиоды. Запертый фотодиод открывается под действием света.

  • Диоды Ганна. Используются для генерации и преобразования частоты в СВЧ диапазоне.

  • Диод Шоттки. Диод с малым падением напряжения при прямом включении.

Условные обозначения:

  1. первый элемент буквенно-цифрового кода обозначает исходный материал (полупроводник), на основе которого изготовлен диод, например:

    • Г или 1 — германий или его соединения;

    • К или 2 — кремний или его соединения;

    • А или 3 — соединения галлия (например, арсенид галлия);

    • И или 4 — соединения индия (например, фосфид индия);

  2. второй элемент — буквенный индекс, определяющий подкласс приборов;

    • Д — для обозначения выпрямительных, импульсных, магнито- и термодиодов;

    • Ц — выпрямительных столбов и блоков;

    • В — варикапов;

    • И — туннельных диодов;

    • А — сверхвысокочастотных диодов;

    • С — стабилитронов, в том числе стабисторов и ограничителей;

    • Л — излучающие оптоэлектронные приборы;

    • О — оптопары;

    • Н — диодные тиристоры;

  3. третий элемент — цифра (или в случае оптопар — буква), определяющая один из основных признаков прибора (параметр, назначение или принцип действия);

  4. четвёртый элемент — число, обозначающее порядковый номер разработки технологического типа изделия;

  5. пятый элемент — буквенный индекс, условно определяющий классификацию по параметрам диодов, изготовленных по единой технологии.

Применение диодов Диодные выпрямители

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий).Диодный выпрямитель или диодный мост — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

9. Биполярный транзистор — Транзистор, назначением которого является усиление мощности электрических сигналов, представляет собой полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р-n-перехода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов). Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором  иэмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь P-n-перехода. Кроме того, для работы транзистора необходима малая толщина базы.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р-n или n-р-n). Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу. Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод-коллектором.

На рис. 1.13, а приведено схематическое изображение структуры транзистора типа n-р-n и два варианта условного графического обозначения (рис. 1.13, б). Транзистор типа р-n-р устроен аналогично, упрощенное изображение его структуры дано на рис. 1.14, а, вариант условного графического обозначения – на рис. 1.14, б. Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки.

Рис. 1.13 Устройство (а) и обозначение транзистора типа n-р-n (б)

Но в различных типах транзисторов роль электронов и дырок различна.

Транзисторы типа n-р-n более распространены в сравнении с транзисторами типа р-n-р, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа n-р-n играют электроны, а в транзисторах типа р-n-р – дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки и поэтому быстродействие транзисторов типа n-р-n выше.

Рис. 1.14 Устройство (а) и обозначение транзистора типа р-n-р (б)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]