- •1. Этапы развития вычислительной техники.
- •1.1. Ручной этап развития вычислительной техники
- •1.2.Механический этап развития вычислительной техники
- •1.3.Электромеханический этап развития вычислительной техники
- •1.4.Электронный этап развития вычислительной техники.
- •2.2. Второе поколение
- •2.4. Эвм четвертого поколения
1.3.Электромеханический этап развития вычислительной техники
Электромеханический этап развития ВТ явился наименее продолжительным и охватывает всего около 60 лет - от первого табулятора Г. Холлерита (1887 г.) до первой ЭВМ ENIAC (1945 г.). Предпосылками создания проектов данного этапа явились как необходимость проведения массовых расчетов (экономика, статистика, управление и планирование, и др.), так и развитие прикладной электротехники (электропривод и электромеханические реле), позволившие создавать электромеханические вычислительные устройства.
Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.
Первый счетно-аналитический комплекс был создан в США Г. Холлеритом в 1887 г. и состоял из: ручного перфоратора, сортировочной машины и табулятора. Основным назначением комплекса являлась статистическая обработка перфокарт. В первых моделях комплекса использовалась ручная сортировка перфокарт (в 1890 г. замененная электрической), а табулятор был создан на основе простейших электромеханических реле. В 1897 г. Холлерит организовал фирму, которая в дальнейшем стала называться IBM.
Развивая работы Г. Холлерита, в ряде стран разрабатывается и производится ряд моделей счетно-аналитических комплексов,из которых наиболее популярными и массовыми были комплексы фирмы IBM, фирмы Ремингтон и фирмы Бюль.
Заключительный период (40-е годы 20 в.) электромеханического этапа развития ВТ характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электроприводом.
Конрад Цузе (K. Zuse) явился пионером создания универсальной вычислительной машины с программным управлением и хранением информации в запоминающем устройстве (ЗУ). Однако его первая модель Z-1 (положившая начало серии Z-машин) идейно уступала конструкции Бэбиджа - в ней не предусматривалась условная передача управления.
Следующая модель Z-2 не была завершена из-за призыва Цузе в армию, из которой он был демобилизован в связи с заинтересованностью его работами военного ведомства Германии. При финансовой поддержке военного ведомства Цузе в 1939-1941 г.г. создает модель Z-3, явившуюся первой программно-управляемой универсальной вычислительной машиной.
Последним крупным проектом релейной ВТ следует считать построенную в 1957 г. в СССР релейную вычислительную машину РВМ-1 и эксплуатировавшуюся до конца 1964 г. в основном для решения экономических задач.
1.4.Электронный этап развития вычислительной техники.
В силу физико-технической природы релейная ВТ не позволяла существенно повысить скорость вычислений;для этого потребовался переход на электронные безинерционные элементы высокого быстродействия.
Первой ЭВМ (правда, специализированной, предназначенной для дешифровки) можно считать английскую машину Colossus, созданную в 1943 г. при участии А. Тьюринга. Машина содержала около 2000 электронных ламп и обладала достаточно высоким быстродействием,однако была узко-специализированной.
Первой ЭВМ принято считать машину ENIAC (Electronic Numerical Integrator And Computer), созданную в США в конце 1945 г. Первоначально предназначенная для решения задач баллистики,машина оказалась универсальной, т.е. способной решать различные задачи.
Еще до начала эксплуатации ENIAC Моучли и Эккерт по заказу военного ведомства США приступили к проекту над новым компьютером EDVAC (Electronic Discrete Automatic Variable Computer), который был совершеннее первого. В этой машине была предусмотрена большая память (на 1024 44-битных слов; к моменту завершения была добавлена вспомогательная память на 4000 слов для данных), предназначенная как для данных, так и для программы.
Компьютер EDSAC положил начало новому этапу развития вычислительной техники-первому поколению универсальных ЭВМ.
2. Характеристика поколенией ЭВМ.
2.1. Первое поколение ЭВМ.
В вычислительной технике существует своеобразная периодизация развития электронных вычислительных машин. Всю электронно-вычислительную технику принято делить на поколения. ЭВМ относят к тому либо иному поколению в зависимости от типа главных используемых в ней частей либо от технологии их производства. От элементной базы зависит мощность компьютера, что в свою очередь привело к изменениям в архитектуре ЭВМ, расширению круга ее задач, к изменению способа взаимодействия пользователя и компьютера. Ясно, что границы поколений в смысле времени сильно размыты, так как в одно и то же время практически выпускались ЭВМ разных типов; для отдельной же машины вопрос о её принадлежности к тому либо иному поколению решается довольно просто.
Предшественниками ЭВМ были релейные вычислительные машины. Реле позволяло кодировать информацию в двоичном виде состояниями включено-выключено. В процессе работы такой машины тысячи реле переключались из одного состояния в другое. Такие машины работами с низкой скоростью (50 сложений или 20 умножений в секунду).
С развитием в первой половине ХХ века радиотехники связан переход от релейных вычислительных машин к машинам на электронно-вакуумных лампах, которые стали элементарной базой вычислительных машин первого поколения.
Первая ЭВМ создавалась в 1943 - 1946 гг. Самой знаменитой была машина созданная в США и называлась она ENIAC (электронный цифровой интегратор и вычислитель). Эта машина содержала около 18 тысяч электронных ламп, множество электромеханических реле. Ее создателями были Дж. Моучли.
ЭВМ первого поколения располагались в огромных машинных залах, потребляли много электроэнергии и требовали остывания с помощью массивных вентиляторов. Программы для этих ЭВМ необходимо было составлять в машинных кодах, и этим могли заниматься лишь мастера, понимающие в деталях устройство ЭВМ.
В 1945 году известный математик и физик - теоретик фон Нейман определил общие принципы работы универсальных вычислительных устройств. Согласно фон Нейману вычислительная машина обязана была управляться программой с последовательным выполнением команд, а сама программа - храниться в памяти машины. Первая ЭВМ с хранимой в памяти программой была построена в Англии в 1949 г.
В СССР созданием компьютеров занимался академик С. А. Лебедева. Его машины БЭСМ – 1, БЭСМ-3М, БЭСМ-4, М- 220 были признаны лучшими в мире.
ЭВМ постоянно совершенствовались, благодаря чему к середине 50 -х годов их быстродействие удалось повысить от нескольких сотен до нескольких десятков тысяч операций в секунду. Но при этом электронная лампа оставалась самым надежным элементом ЭВМ. Внедрение ламп стало тормозить дальнейший прогресс вычислительной техники.
Потом на смену лампам пришли полупроводниковые приборы, тем самым завершился первый этап развития ЭВМ. Вычислительные машины этого этапа принято именовать ЭВМ первого поколения
Таким образом, машины первого поколения имели внушительные размеры, потребляли огромную мощность, имели сравнимо маленькое быстродействие, малую емкость оперативной памяти, невысокую надежность работы и недостаточно развитое программное обеспечение. В ЭВМ этого поколения были заложены базы логического построения машин и продемонстрированы способности цифровой вычислительной техники. Но использование в качестве элементной базы электронно-вакуумных ламп тормозило развитие и совершенствование ЭВМ, ограничивало область их применения. Они использовались в основном для инженерных и научных расчетов, не связанных с переработкой больших объемов информации.
В ниже приведенной таблице собрана краткая характеристика ЭВМ I-го поколения:
Характеристики
I поколение
Годы
1945- 1958 гг.
Элементная база
Электронно-вакуумные лампы
Размер (габариты)
Громоздкие сооружения, занимавшие сотни квадратных метров, потреблявшие сотни киловатт электроэнергии и содержащие в себе тысячи ламп.
Максимальное быстродействие процессора
От нескольких сотен до нескольких десятков тысяч операций в секунду.
Максимальный объем ОЗУ
Несколько тысяч команд программы
Периферийные
Перфоленты и перфокарты
Программное обеспечение
Программы составлялись на языке машинных команд, поэтому программирование было доступно не всеем. Существовали библиотеки стандартных программ.
Области применения
Инженерные и научные расчеты, не связанные с переработкой больших объемов информации
Примеры
Mark I, ENIAC, БЭСМ.
компьютер вычислительный информационный технология
