- •Эконометрика. Цели и задачи. Этапы эконометрического моделирования.
- •Основные этапы регрессионного анализа.
- •Что такое функция регрессии? Чем регрессионная модель отличается от функции регрессии?
- •Как выглядит линейная модель парной регрессии? Как называются переменные в модели?
- •Коэффициент корреляции. Свойства коэффициента корреляции. Множественный коэффициент корреляции. Частный коэффициент корреляции. Ложная корреляция.
- •Причины наличия в регрессионной модели случайного отклонения.
- •Что понимается под спецификацией модели и как она осуществляется в случае одной независимой переменной.
- •В чем состоит различие между теоретическим и эмпирическим уравнениями регрессии?
- •В чем суть метода наименьших квадратов?
- •Выведите формулы для расчета коэффициентов парной линейной регрессии по методу наименьших квадратов.
- •Проинтерпретируйте коэффициенты эмпирического парного линейного уравнения регрессии.
- •12.Коэффициент детерминации. Роль коэффициента детерминации при определении качества построенного уравнения регрессии. Формула расчёта коэффициента детерминации.
- •15. Расчет коэффициентов множественной регрессии по мнк в матричной форме.
- •16. Коэффициент детерминации и скорректированный коэффициент детерминации.
- •Сформулируйте предпосылки мнк. Каковы последствия их выполнимости или невыполнимости.
- •Как определяются стандартные ошибки регрессии и коэффициентов регрессии?
- •19. Интервальные оценки коэффициентов регрессии
- •20. В чем суть статистической значимости коэффициентов регрессии?
- •Как определяется статистическая значимость коэффициентов регрессии
- •Что такое предсказание значения зависимой переменной? Как его найти?
- •Что означает статистическая значимость уравнения регрессии в целом? Как проверить значимость уравнения по f-тесту?
- •Что такое мультиколлинеарность? Последствия мультиколлинеарности.
- •Методы устранения мультиколлинеарности.
- •26. Пошаговый метод включения исключения факторной переменной в модель регрессии.
- •27.Нелинейные модели регрессии.
- •28.Основные виды ошибок спецификации модели.
- •4.3. Ошибки спецификации
- •29. Фиктивная переменная. Причины использования фиктивных переменных в моделях регрессии.
- •Что такое автокорреляция остатков, и каковы ее виды? Причины ее возникновения.
- •30. В чем суть теста Чоу проверки структурной однородности модели. Тест Грегори Чоу
- •Примеры использования фиктивных переменных.
- •Каким образом выявляется наличие автокорреляции в остатках?
- •Способы устранения автокорреляции в остатках.
- •Что такое гетероскедастичность? Причины и последствия гетероскедастичности.(гл 5)
- •38. Временной ряд. Составляющие временного ряда. Примеры.
- •39.Коэффициент автокорреляции. Автокорреляционная функция. Коррелограмма.
Что такое функция регрессии? Чем регрессионная модель отличается от функции регрессии?
Односторонняя зависимость, выражаемая соотношением Мх(Y) = У(x), называется функцией регрессии или просто регрессией Y на Х, где у - зависимая переменная (результативный признак); х - независимая, или объясняющая, переменная (признак-фактор). Под уравнением регрессии понимают функциональную зависимость между объясняющими переменными и условным математическим ожиданием (средним значением) зависимой переменной, которая строится с целью определения оценки этого среднего значения.
В широком смысле модель - это аналог, условный образ (изображение, описание, схема, чертёж и т.п.) какого-либо объекта, процесса или события, приближенно воссоздающий «оригинал». Модель представляет собой логическое или математическое описание компонентов и функций, отображающих существенные свойства моделируемого объекта или процесса, даёт возможность установить основные закономерности изменения оригинала.
Как выглядит линейная модель парной регрессии? Как называются переменные в модели?
Коэффициент корреляции. Свойства коэффициента корреляции. Множественный коэффициент корреляции. Частный коэффициент корреляции. Ложная корреляция.
Коэффициент корреляции - численная мера силы и направления связи между двумя количественными или качественными порядковыми признаками.
Коэффициент корреляции может принимать значения от −1 до +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи, а если ближе к 0 — связь слабая или вообще отсутствует.
Различают параметрические (Пирсона) и непараметрические (Спирмена, Кендалла, тау) способы подсчёта коэффициента корреляции.
Для обозначения параметрического коэффициента корреляции Пирсона обычно используется обозначение r , для рангового коэффициента корреляции Спирмена – обозначение - p.
Свойства коэффициента корреляции:
Коэффициент множественной корреляции (R) характеризует тесноту связи между результативным показателем и набором факторных показателей:
где σ2 — общая дисперсия эмпирического ряда, характеризующая общую вариацию результативного показателя (у) за счет факторов;
σост2 — остаточная дисперсия в ряду у, отражающая влияния всех факторов, кроме х;
у — среднее значение результативного показателя, вычисленное по исходным наблюдениям;
s — среднее значение результативного показателя, вычисленное по уравнению регрессии.
Коэффициент множественной корреляции принимает только положительные значения в пределах от 0 до 1. Чем ближе значение коэффициента к 1, тем больше теснота связи. И, наоборот, чем ближе к 0, тем зависимость меньше. При значении R < 0,3 говорят о малой зависимости между величинами. При значении 0,3 < R < 0,6 говорят о средней тесноте связи. При R > 0,6 говорят о наличии существенной связи.
Частные коэффициенты корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии. Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель
Коэффициент частной корреляции (Partial Correlation) показывает степень (тесноту) взаимосвязи двух переменных относительно друг друга, без учета влияния третьей переменной.
Для вычисления частного коэффициента корреляции между тремя переменными требуется знать их коэффициенты корреляции Пирсона.
Формула частного коэффициента корреляции для коэффициента корреляции Пирсона следующая:
где
коэффициенты корреляции r-Пирсона
исследуемых переменных между собой.
Формула частного коэффициента корреляции для коэффициента корреляции Кендала (в отличие от коэффициента корреляции Спирмена) следующая:
Где коэффициенты корреляции r-Пирсона исследуемых переменных между собой.
