- •Эконометрика. Цели и задачи. Этапы эконометрического моделирования.
- •Основные этапы регрессионного анализа.
- •Что такое функция регрессии? Чем регрессионная модель отличается от функции регрессии?
- •Как выглядит линейная модель парной регрессии? Как называются переменные в модели?
- •Коэффициент корреляции. Свойства коэффициента корреляции. Множественный коэффициент корреляции. Частный коэффициент корреляции. Ложная корреляция.
- •Причины наличия в регрессионной модели случайного отклонения.
- •Что понимается под спецификацией модели и как она осуществляется в случае одной независимой переменной.
- •В чем состоит различие между теоретическим и эмпирическим уравнениями регрессии?
- •В чем суть метода наименьших квадратов?
- •Выведите формулы для расчета коэффициентов парной линейной регрессии по методу наименьших квадратов.
- •Проинтерпретируйте коэффициенты эмпирического парного линейного уравнения регрессии.
- •12.Коэффициент детерминации. Роль коэффициента детерминации при определении качества построенного уравнения регрессии. Формула расчёта коэффициента детерминации.
- •15. Расчет коэффициентов множественной регрессии по мнк в матричной форме.
- •16. Коэффициент детерминации и скорректированный коэффициент детерминации.
- •Сформулируйте предпосылки мнк. Каковы последствия их выполнимости или невыполнимости.
- •Как определяются стандартные ошибки регрессии и коэффициентов регрессии?
- •19. Интервальные оценки коэффициентов регрессии
- •20. В чем суть статистической значимости коэффициентов регрессии?
- •Как определяется статистическая значимость коэффициентов регрессии
- •Что такое предсказание значения зависимой переменной? Как его найти?
- •Что означает статистическая значимость уравнения регрессии в целом? Как проверить значимость уравнения по f-тесту?
- •Что такое мультиколлинеарность? Последствия мультиколлинеарности.
- •Методы устранения мультиколлинеарности.
- •26. Пошаговый метод включения исключения факторной переменной в модель регрессии.
- •27.Нелинейные модели регрессии.
- •28.Основные виды ошибок спецификации модели.
- •4.3. Ошибки спецификации
- •29. Фиктивная переменная. Причины использования фиктивных переменных в моделях регрессии.
- •Что такое автокорреляция остатков, и каковы ее виды? Причины ее возникновения.
- •30. В чем суть теста Чоу проверки структурной однородности модели. Тест Грегори Чоу
- •Примеры использования фиктивных переменных.
- •Каким образом выявляется наличие автокорреляции в остатках?
- •Способы устранения автокорреляции в остатках.
- •Что такое гетероскедастичность? Причины и последствия гетероскедастичности.(гл 5)
- •38. Временной ряд. Составляющие временного ряда. Примеры.
- •39.Коэффициент автокорреляции. Автокорреляционная функция. Коррелограмма.
30. В чем суть теста Чоу проверки структурной однородности модели. Тест Грегори Чоу
В том случае, когда фиктивная переменная действует на коэффициент при объясняющей переменной, линия модели отличается от той, которая была до уровня х0, что соответствует разбиению выборочных данных на две части (группы) и рассмотрению отдельных уравнений регрессии по каждой выборке (подвыборке).
В практических исследованиях достаточно часто возникает вопрос, имеет ли смысл разбивать выборку на части и строить так называемою кусочно-линейную модель с фиктивными переменными или ограничиться «обыкновенной» общей регрессией для всего диапазона точек наблюдений?
Для
ответа на этот вопрос обычно используется
тест (критерий) Грегори Чоу [1,28], суть
которого заключается в следующем. Пусть
общая выборка имеет объем n Через S0
обозначим сумму квадратов отклонений
выборочных данных от их модельных
оценок, полученных по общему уравнению
регрессии. Разобьем выборку на две
подвыборки объемами n1 и n2 соответственно
(n1 + n2 = n). Будем считать, что для каждой
подвыборки можно построить уравнения
регрессии одного вида, но с разными
коэффициентами b. Через
и
обозначим соответствующие суммы
квадратов отклонений. Далее рассмотрим
некоторые соотношения.
Очевидно, что равенство S0 = S1 + S2 выполняется лишь при совпадении коэффициентов регрессии для всех трех уравнений. Тогда отклонение S0 (S1 + S2) может быть использовано как показатель улучшения качества модели при разбиении интервала наблюдений на две подвыброки, так как чем сильнее различие в поведении Y для каждой из подвыборок, тем больше значение S0 будет превосходить сумму S1 + S2. Следовательно, отношение [S0 (S1 + S2)]/(m + 1) будет определять оценку уменьшения дисперсии регрессии за счет построения двух уравнений вместо одного.
При разбиении общей выборки число степеней свободы сократится на (m + 1), т. к. теперь вместо (m + 1) параметра объединенной регрессионной модели необходимо оценивать (2m + 2) коэффициента двух регрессий. В данном случае соотношение (S1 + S2)/(n 2m 2) выражает необъясненную дисперсию зависимой переменной при рассмотрении двух регрессий.
Приведенные выше рассуждения позволяют сделать вывод о том, что общую выборку целесообразно разбивать на два интервала только в том случае, если соответствующее уменьшение дисперсии будет значимо больше оставшейся необъясненной дисперсии. Этот вывод может быть основан на стандартной процедуре сравнения дисперсий на основе F-статистики, наблюдаемое значение которой для данного анализа имеет вид:
где m число количественных объясняющих переменных в уравнениях регрессии (m одинаково для всех трех уравнений модели).
Если Fнабл < Fкр при заданном уровне значимости и соответствующих числах степеней свободы v1 = m + 1 и v2 = n 2m 2, то можно считать, что различие между S0 и S1 + S2 статистически незначимо и нет смысла разбивать уравнение модели на части путем введения фиктивных переменных. Следует заметить, что фактически мы тестируем гипотезу Н0 о равенстве коэффициентов b уравнений регрессии, построенных по каждой подвыборке. Если нулевая гипотеза Н0 верна, то две регрессионные модели можно объединить в одну, построенную по выборке объема n = n1 + n2.
