- •Определение эконометрики, задачи эконометрики, этапы эконометрического исследования
- •Спецификация модели и метод выбора парной регрессии
- •Метод наименьших квадратов
- •Свойства оценок метода наименьших квадратов
- •Оценка существенности парной линейной регрессии
- •Оценка существенности параметров уравнения одинаковые
- •Линейный коэффициент корреляции. Коэффициент детерминации. Значимость линейного коэффициента корреляции
- •Интервальный прогноз по линейному уравнению регрессии
- •Нелинейная регрессия. Классификация, примеры моделей
- •Степенная регрессия
- •Показательная регрессия
- •Гиперболическая регрессия
- •Гиперболическая регрессия одинаковые
- •14. Средняя ошибка аппроксимации
- •15. Коэффициент эластичности
- •17. Спецификации модели и методы построения уравнения множественной регрессии
- •18. Оценка параметров уравнения множественной регрессии.
- •19. Стандартизованный коэффициент регрессии
- •20. Множественная корреляция
- •21. Выбор формы уравнения множественной регрессии
- •22. Частный коэффициент корреляции
- •23. Оценка надежности результатов множественной регрессии и корреляции.
- •24. Предпосылки мнк
- •25. Автокорреляция в остатках. Методы оценивания
- •26. Суть и последствия гетероскедастичности
- •27. Методы обнаружения гетероскедастичности
- •28. Омнк
- •29. Сущность и признаки мультиколлинеарности, ее последствия
- •30. Методы устранения мультиколлинеарности
- •31. Фиктивные переменные, их использование в сезонных исследованиях
- •32. Как интерпретируются коэффициенты при фиктивных переменных
- •33. Временные ряды. Классификация.
- •34. Компоненты временного ряда. Уровни временного ряда
- •35. Понятие тренда, его компоненты, анализ.
- •36. Моделирование сезонных и циклических колебаний
- •37. Автокорреляция временных рядов. Коэффициент корреляции. Лаг.
- •38. Методы обнаружения автокорреляции. Критерий Дарбина-Уотсона
- •Ограничения коэффициента ранговой корреляции
- •39. Методы обнаружения автокорреляции. Критерий Спирмена
- •Ограничения коэффициента ранговой корреляции
- •40.Системы эконометрических уравнений
- •41. Проблема идентификации
- •42. Структурная и приведенная формы модели.
- •43.Идентификация модели. Проблема идентификации.
- •44. Оценивание параметров структурной модели.
- •45. Косвенный метод наименьших квадратов
- •46. Двухшаговый метод наименьших квадратов
Показательная регрессия
Показательная функция вида
является нелинейной по коэффициенту β1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка εi мультипликативно связана с факторной переменной хi.
Данную модель можно привести к линейному виду с помощью логарифмирования:
Log yi=log β0+ хi* logβ1+ logεi.
Для более наглядного представления данной модели регрессии воспользуемся методом замен:
log yi=Yi;
log β0=A;
logβ1=B;
logεi=E.
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Yi=A+Bхi+E.
Таким образом, можно сделать вывод, что рассмотренная показательная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Рассмотрим второй класс моделей регрессии, нелинейных по оцениваемым коэффициентам.
Показательная функция вида
относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка βi аддитивно связана с факторной переменной хi.
Гиперболическая регрессия
Гиперболическая регрессия одинаковые
Одним
из видов нелинейных зависимостей в
эконометрике являются гиперболические
зависимости в виде функции, в которых
независимая переменная находится в
знаменателе дроби в степени (–1), (–2) и
т.д. Как правило, в таких моделях параметры
являются линейными. Рассмотрим
уравнения:
которые
представляют одну и ту же модель, так
как
и
оба уравнения они отражают гиперболическую
зависимость y от
x.
В
уравнении
независимая
переменная x представлена
в степени (–1) и (–2), и это тоже
гиперболическая модель.
А
в уравнении
переменная х представлена
в степени 1, и это линейное уравнение
регрессии с коэффициентом регрессии
.
Поэтому уравнение
не
является гиперболической моделью.
14. Средняя ошибка аппроксимации
Фактические значения результативного признака у отличаются от теоретических значений у ̅_х, рассчитанных по уравнению регрессии. Чем меньше эти отличия, тем ближе теоретические значения к эмпирическим данным, тем лучше качество модели.
Величина отклонений фактических и расчетных значений результативного признака у-у ̅_х каждому наблюдению представляет собой ошибку аппроксимации. В отдельных случаях ошибка аппроксимации может оказаться равной нулю. Для сравнения используются величины отклонений, выраженные в процентах к фактическим значениям.
Поскольку у-у ̅_х может быть как величиной положительной, так и отрицательной, то ошибки аппроксимации для каждого наблюдения принято определять в процентах по модулю.
Отклонения у-у ̅_х можно рассматривать как абсолютную ошибку аппроксимации, а │ (у-у ̅_х)/у│*100% - как относительную ошибку аппроксимации.
Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению определяют среднюю ошибку аппроксимации: А= 1/( n)- ∑▒〖|(у-у ̅_х)/у|*100%〗
Возможно и иное определение средней ошибки аппроксимации:
A = (100%)/y-√(∑▒〖(у-у ̅_х)〗^2/n)
Если А£10-12%, то можно говорить о хорошем качестве модели.
